• Title/Summary/Keyword: B4C grain

Search Result 340, Processing Time 0.028 seconds

Effect of Grain Size Control and Binder Additions on the Soft Magnetic Properties of Fe-based Nanocrystalline Powder Cores (Fe계 나노결정 분말코아의 연자성특성에 미치는 입도제어 및 바인더 첨가의 영향)

  • Cho E.K.;Cho H.J.;Kwon H.T.;Cho E.M.;Ryu H.H.;Sohn K.Y.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.256-262
    • /
    • 2006
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy strip was pulverized to get a flake-shaped powder after annealing at $425^{\circ}C$ for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of $0.5{\sim}3wt%$, and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at $380{\sim}600^{\circ}C$, the powder was transformed from amorphous to nanocrystalline with the grain size of $10{\sim}15nm$. Soft magnetic characteristics of the powder core was optimized at $550{\sim}600^{\circ}C$ with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.

The Contents of Free Sugar and Alcohol in Traditional Soy Sauce Prepared from Meju under Different Formations (형상이 다른 메주로 제조한 재래식 간장 중의 유리당과 알코올 함량)

  • 서정숙;이택수
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.103-108
    • /
    • 1993
  • The Kinds of soy sauce were prepared using the brick type of conventional meju(A), the brick type of meju of Aspergillus oryzae(B), and the grain type of meju of Aspergillus oryzae(C). Free sugar and alcohol were analyzed in accordance to aging time of those products. Galactose, glucose, arabinose, xylose, and mannose were detected in all kinds of soy sauce. In soy sauce 4 galactose, glucose, arabinose, and xylose were shown in the order of content. The content of galactose in soy sauce A and soy sauce C were shown higher than that in soy sauce B alt during the time. The content of glucose was highest among that of all kinds of free sugars at the beginning of preparation, but the content of glucose was lower than that of arabinose and xylose after 60 days. The contents order of total free sugar was soy sauce C > soy sauce B > soy sauce A. The content of ethyl alcohol was shown 6.23∼19.10mg%, and that of isobutyl alcohol was 8.70∼ 169.03 ppm in all soy sauces, but those of soy sauce C was higher than those of other soy sauces.

  • PDF

A study on th reaction between silicon in melt and carbon (용융상태에서의 silicon과 carbon의 반응에 관한 연구)

  • M.J. Lee;B.J. Kim;S.M. Kang;J.K. Choi;B.S. Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.336-346
    • /
    • 1994
  • We studied the reaction between silicon and carbon. Silicon granules and silicon with 0.2 wt% carbon powders were prepared for sample and then they were heated up to the $1450^{\circ}C, 1550^{\circ}C, 1650^{\circ}C, 1700^{\circ}C$ and were dwelled 1 hr and 4 hrs, respectively. we studied the change of morphologies of molten silicon and the formation of SiC following the reaction withcarbon using optical microscope, SEM, and XRD. Above the melting point of silicon, oxygens are precipitated during the decomposition of quartz used crucible. SiO formed from the reaction between molten silicon and precipitated oxygen evaporated and made the surface defects. SiC were formed with the reaction between the unreacted carbon and molten silicon. Polytype of the SiC formed at the solidification interface was ${\alpha}-SiC$.

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites (무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

MULTI-RUN EFFECTS ON THE SOLID FUEL RAMJET COMBUSTION

  • Tae-Ho Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.3-8
    • /
    • 1995
  • An experimental investigation was conducted in order to figure out the multiple fire effects on the combustion efficiency and fuel properties of the solid fuel ramjet. Pure HTPB and metallized $B_4$C/HTPB fuel were studied. Fuel property effects were analyzed by using differential scanning calorimetry, The thermal or mechanical properties of the fuel grain were not affected and the combustion efficiency was a little increased.

  • PDF

Preparation, Structure, and Photoemission Studies on the High Temperature Superconductor $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$

  • Choy, Jin-Ho;Choe, Won-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.379-383
    • /
    • 1990
  • $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$, with x = 0.05, 0.2, 0.4, 0.7 and 1.0 had been prepared by the thermal decomposition of corresponding nitrates. Among them, the sample with x = 0.05 shows above-liquid-$N_2$ temperature superconductivity with $T_c$ of 88.7K. According to the X-ray diffraction analysis, its crystal symmetry was estimated as orthorhombic with the lattice parameters of a = 3.866${\AA}$, b = 3.893${\AA}$, c = 11.715${\AA}$. The chemical composition of the sample was determined by electron probe microanalysis and the chemical composition around its grain boundaries was carefully studied by the X-ray line scanning technique. From the observed binding energy of Ni-$2p_{3/2}$ orbital electron (B.E. = 853 eV) measured by X-ray photoelectron spectroscopy, the valency state of nickel stabilized in $YBa_2Cu_{2.95}Ni_{0.05}O_{7-{\delta}}$ oxide lattice could be determined to be Ni(II).

The Effect of Die Upset and Heat Treatment on the Magnetic Properties of Mechanically Ground Nd-Fe-B Alloys (기계적 분쇄한 Nd-Fe-B 합금의 다이업셋과 열처리가 자기적 특성에 미치는 영향)

  • 정원용;박정덕;곽창섭;양현수
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.233-238
    • /
    • 1994
  • The effect of die upset and heat treatment on the magnetic properties of mechanically ground $Nd_{16}Fe_{78}B_{6}$ alloys has been studied. Although stripe domain patterns parallel to the compression direction were observed after die upset, it was found that crystallographic c-axes of a specimen were not completely aligned along the compression direction' which resulted in the decrease of Br. The average grain size of a die-upset specimen annealed for 5 hours at $1000^{\circ}C$ was about $20\mu\textrm{m}$, resulting in reduced values of Br and $_{i}H_{c}$. The maximum magnetic properties (Br=7.8 kG and $(_{i}H_{c}=14\;kOe) were obtained from the magnet die-upset at $750^{\circ}C$ using the alloy powder ground for 13 hours.

  • PDF

A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Characteristics and Antioxidative Activity of Fermented Mixed Grain Beverages Produced by Different Microbial Species (잡곡발효물의 제조와 항산화 활성 비교)

  • Lee, Jae Sung;Kang, Yun Hwan;Kim, Kyoung Kon;Lim, Jun Gu;Kim, Tae Woo;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1175-1182
    • /
    • 2013
  • The purpose of this study was to evaluate the functional characteristics of fermented mixed grain beverages obtained using different microbial species and to evaluate their suitability for consumption. Various fermented mixed grain beverages were prepared through fermentation with Aspergillus (A.) oryzae CF1003 (A), A. acidus KACC46420 (B), Rhizopus (R.) delemar KACC46149 (C), R. oryzae KACC45714 (D), R. oryzae KACC46148 (E), A-E mixed strains (F), A. oryzae CF1001 (G), A. acidus CF1005 (H) and A+H mixed strains (I). The visual appearance, flavor, taste, and the antioxidant capacity of each fermented beverage were then assessed. The chromaticity and aesthetic quality of the fermented beverage was measured and all fermented beverages appeared yellow. The C-, G-, H- and I-fermented beverages received scores of 3.319, 3.206, 3.170 and 3.025 points, respectively, following a sensory evaluation, while the others received less than 3 points. The polyphenol content of the different beverages were similar, while the flavonoid content significantly differed. In particular, the flavonoid content of the C- and E-fermented beverages was significantly higher than other beverages. Although the electron donating ability and reducing power of the fermented beverages was very low, the superoxide dismutase (SOD)-like activity of all beverages (except the E-fermented beverage) increased in a concentration-dependent manner. Specifically, the SOD-like activity from the F-fermented beverage at 10,000 ppm was more than 50%. Interestingly, the antioxidant activities of the beverages were unrelated to their polyphenol or flavonoid levels. This study also found that the aesthetic qualities of G- and H-fermented beverages were the highest and that this was completely independent of their antioxidant capacity. Therefore, our results suggest that further studies are required to develop mixed grain-derived fermented beverages that can also fulfill a useful functional purpose.