• Title/Summary/Keyword: B3LYP

Search Result 202, Processing Time 0.035 seconds

New Mechanism for the Reaction of Thianthrene Cation Radical Perchlorate with tert-Butyl Peroxide

  • Park, Bo-Kyung;Sohn, Chang-Kook;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.103-106
    • /
    • 2002
  • A new reaction mechanism is proposed for the reaction of thianthrene cation radical perchlorate $(Th^{+{\cdot}}CIO_4^-}$ and tert-butyl peroxide in acetonitrile at room temperature on the basis of experimental and theoretical results. Rapid C-O bond rupture instead of O-O bond cleavage was observed by a good peroxy radical trapping agent, thianthrene cation radical. Products were N-tert-butyl acetamide, thianthrene 5-oxide (ThO), thianthrene 5,5-dioxide $(SSO_2)$, and thianthrene (Th). Thianthrene 5,10-dioxide (SOSO) was not obtained. A comparative computational study of the cation radical of tert-butyl peroxide is made by using B3LYP and CBS-4. The computational results are helpful to explain the reaction mechanism.

Calculated and Experimental UV and IR Spectra of Oligo-para-phenylenes

  • Park, Kwangyong;Lee, Tae-Won;Yoon, Min-Ju;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • The quantum mechanical properties of a series of oligo-para-phenylenes (2-11) were characterized using DFT B3LYP/6-311G(d,p) calculations. The global minimum among the various torsional conformers of an oligo-p-phenylene is calculated to be a twist conformation. A less stable planar conformation, in which all the dihedral angles in oligo-p-phenylene are restricted to be planar, has also been calculated. The total electronic energies, normal vibrational modes, Gibbs free energies, and HOMOs and LUMOs of the two different conformations (twisted and planar) of the oligo-p-phenylenes were analyzed. The energy differences between the HOMOs and LUMOs of the substrates are in accord with the maximum absorption peaks of the experimental UV spectra of 2-6. The calculated normal vibrational modes of 2-6 were comparable with their experimental IR spectra.

DFT Study of p-tert-Butylcalix[5]crown-6-ether Complexed with Alkylammonium Ions

  • Oh, Dong-Suk;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.596-600
    • /
    • 2007
  • The structures and energies of p-tert-butylcalix[5]crown-6-ether (1) and its alkylammonium complexes have been calculated by DFT B3LYP/6-31G(d,p) method. We have studied the binding sites of these host-guest complexes focusing on the p-tert-butylcalix[5]arene pocket (endo) or the crown-6-ether moiety (exo) of 1. The smaller alkylammonium cations have the better complexation efficiency with p-tert-butylcalix[5]crown-6- ether than the bulkier alkylammonium ions. For the sec- and tert-butylammonium ions, the hydrogen-bond distances of the exo-complexes are shorter, therefore, stronger than the endo-cases. This DFT calculated result is in parallel with the trend of the experimental association constants of the branched butylammonium ions.

Addition Reaction of Cyclopropane with Magnesium Dihydride (MgH2): A Theoretical Study

  • Singh, Satya Prakash;Meena, Jay Singh;Thankachan, Pompozhi Protasis
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.697-702
    • /
    • 2013
  • The addition reaction of cyclopropane with $MgH_2$ has been investigated using the B3LYP density functional method employing several split-valence basis sets. Both along the and perpendicular to the cyclopropane ring approach has been reported. It is shown that the reaction proceeds via a four-centered transition state. Calculations at higher levels of theory were also performed at the geometries optimized at the B3LYP level, but only slight changes in the barriers were observed. Structural parameters for the transition state are also reported.

양자계산을 이용한 Formate Dehydrogenase (FDH)의 메커니즘 연구

  • Kim, Hyeon-Uk;Lee, Jun-Seong;Kim, Yong-Bin;Jang, Rak-U
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.67-75
    • /
    • 2013
  • 최근 이상기후의 원인으로 손꼽히는 물질의 중심에는 이산화탄소가 있으며 이를 제거하기 위한 여러 연구가 진행되고 있다. 최근에는 전극이 있는 수조에 미생물을 넣고 이산화탄소를 화학적 에너지로 사용할 수 있도록 알코올로 변환시켜주는 시스템이 발표되었다. 이에 따라 본 연구진에서는 이러한 전극 시스템에서 이용될 수 있는 효소를 찾고 효소촉매화 반응의 메커니즘을 자세히 연구하고자 하였다. 본 연구에서 사용된 효소인 Formate dehydrogenase (FDH)는 formate를 조효소인 nicotinamide adenine dinucleotide ($NAD^+$)를 사용하여 이산화탄소로 산화시키는 반응을 촉진시키는 효소이다. 본 연구에서는 이러한 FDH의 산화반응의 역반응을 이용하여 이산화탄소를 효과적으로 분해하는 메커니즘을 연구하기에 앞서 wild type의 반응 메커니즘에 대해 깊이 연구하고자 B3LYP 방법의 양자계산을 하여 반응의 transition state와 potential energy를 조사하였다.

  • PDF

Determination of Atomic Structures and Relative Stabilities of Diadduct Regioisomers of C20X2 (X = H, F, Cl, Br, and OH) by the Hybrid Density-Functional B3LYP Method

  • Lee, Seol;Suh, Young-Sun;Hwang, Yong-Gyoo;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3372-3376
    • /
    • 2011
  • We have studied the relative stability and atomic structures of five $C_{20}X_2$ regioisomers obtained as diadducts of a $C_{20}$ cage (X = H, F, Cl, Br, and OH). All the regioisomers are geometric isomers, i.e., they differ in their spatial arrangement. Full-geometry optimizations of the regioisomers have been performed using the hybrid density-functional (B3LYP/6-31G(d, p)) method. Our results suggest that the cis-1 regioisomer (the 1,2-diadduct) is the most stable and that the second most stable is the trans-2 (1,13-diadduct) regioisomer, implying that the long-range interaction between the two adducts and the resonance effect are more pronounced than the diadduct-induced strain in the $C_{20}$ cage. The HOMO and LUMO characteristics of each regioisomer with the same symmetry of structural regioisomers except $C_{20}(OH)_2$ are topologically same. This suggests that by using an entirely different set of characteristic chemical reactions for each regioisomer, we can distinguish between the five regioisomers for each $C_{20}$ diadduct derivative.

Theoretical Study on the High Energetic Properties of HMX/LLM-116 Cocrystals (HMX/LLM-116 공결정의 고에너지 특성에 관한 이론 연구)

  • Kim, Sung-Hyun;Ko, Yoo-Mi;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The theoretical investigation has been performed to predict detonation velocity, detonation pressure, and thermodynamic stability of HMX/LLM-116 cocrystal. All possible geometries of HMX, LLM-116, and cocrystal have been optimized at the B3LYP/cc-pVTZ level of theory. The binding energy for the trigger bond and cluster has been calculated to predict the thermodynamic stability. The MP2 binding energies were obtained using single point energy calculation at the B3LYP optimized geometries, and the density has been calculated from monte carlo integration. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the CBS-Q level of theory.

DFT Conformational Study of Calix[6]arene: Hydrogen Bond

  • Kim, Kwang-Ho;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.837-845
    • /
    • 2009
  • We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the calix[6]arene (1) and p-tert-butylcalix[6]arene (2). The structures of various conformers of 1 were optimized by using the B3LYP/6-31G(d,p) and /6-31+G(d,p) methods followed by single point calculation of MPW1PW91/ 6-31G(d,p). The relative stability of the conformers of 1 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) $\sim$ 1,2-alternate $\sim$ 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of different conformers of 2 were optimized by using the B3LYP/6-31G(d,p) method followed by single point calculation of MPW1PW91/6-31G(d,p). The relative stability of the conformers of 2 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate $\sim$ partial-cone > 1,2,3-alternate > 1,3,5alternate > 1,3-alternate. One of the important factors affecting the relative stabilities of the various conformers of the 1 and 2 is the number and strength of the intramolecular hydrogen bonds.

Experimental and ab initio Computational Studies on Dimethyl-(4-{4-{3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine

  • Yuksektepe, Cigdem;Saracoglu, Hanife;Caliskan, Nezihe;Yilmaz, Ibrahim;Cukurovali, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3553-3560
    • /
    • 2010
  • A new hydrazone derivative compound has been synthesized and characterized by IR, $^1H$-NMR, $^{13}C$-NMR and UV-vis. spectroscopy techniques, elemental analysis and single-crystal X-ray diffraction (XRD). The new compound crystallizes in monoclinic space group C2/c. In addition to the crystal structure from X-ray experiment, the molecular geometry, vibrational frequencies and frontier molecular orbitals analysis of the title compound in the ground state have been calculated by using the HF/6-31G(d, p), B3LYP/6-311G(d, p) and B3LYP/6-31G(d, p) methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine conformational flexibility, molecular energy profile of (1) was obtained by semi-empirical (AM1) calculation with respect to a selected degree of torsional freedom, which was varied from $-180^{\circ}$ to $+180^{\circ}$ in steps of $10^{\circ}$. Molecular electrostatic potential of the compound was also performed by the theoretical method.