• Title/Summary/Keyword: B2B2C

Search Result 18,456, Processing Time 0.056 seconds

The Relative Effects of Business-to-Business (vs. Business-to-Consumer) Business Model Innovation on Innovation Performance (B2B (vs. B2C) 비즈니스모델혁신이 혁신성과에 미치는 상대적 효과)

  • Yejin Park;Chaeeun Lee;Wonjoo Yun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.159-172
    • /
    • 2023
  • This study aims to empirically investigate the relative effects of business-to-business (vs. business-to-consumer) business model innovation (BMI) on innovation performance. The research examines the impact of three key components of BMI: 1. value creation, 2. value proposition, and 3. value capture, on innovation performance. The 2022 Entrepreneurship Survey data by the Korean Entrepreneurship Foundation was used to analyze 2,879 companies. An exploratory data analysis (EDA) including various categories such as industry, firm, CEO, and technology chracteristics was conducted to show the latest startup status in Korea. The results show that value creation of B2B (vs. B2C) firms has a more positive and significant impact on innovation performance. Whereas, value proposition of B2C (vs. B2B) firms was found to have a more positive and significant effect on innovation performance. Interestingly, value capture did not show any effects for either type of firms. Additionally, the study employed seemingly unrelated regression (SUR) analysis for robustness checks. These findings provide important insights about the relative effects of B2B-BMI (vs. B2C-BMI).

  • PDF

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

A Study on Synthesis and Characterization of TiZrB$_2$ Composite by SHS Microwave (SHS 마이크로파에 의한 TiZrB$_2$ 복합재료의 합성 및 특성연구)

  • 이형복;윤영진;오유근;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • TiZrB2 solid solution was synthesized using fine powders of Ti, Zr and B by SHS microwave process. The characterization of the synthesized powder and sintered bodies ws investigated. The combustion temperature and rate were increased with increasing the mole ratio of Zr in temperature profile, and showed the maximum combustion temperature and velocity values of 285$0^{\circ}C$ and 14.6mm/sec in Ti0.2Zr0.8B2 composition. Phase separation has been occured into a composite with TiB2 and ZrB2 phases from TiZrB2 solid solution, which was hot pressed sintering at 30 MPa for an hour at 190$0^{\circ}C$. At the composition of Ti0.8Zr0.2B2 the best properties has been obtained in relative density, bending strength, fracture toughness and hardness, with 99%, 680 MPa, 7.3MPa.m1/2 and 2750 Kg/$\textrm{mm}^2$ respectively.

  • PDF

Reaction Synthesis and Mechanical Properties of $B_4C$-based Ceramic Composites

  • Han, Jae-Ho;Park, Sang-Whan;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1080-1081
    • /
    • 2006
  • In this investigation, $B_4C$ based ceramic composites were fabricated by in-situ reaction hot pressing using $B_4C$, TiC SiC powder as starting materials. The reaction synthesized composites by hot pressing at $1950^{\circ}C$ was found to posses very high relative density. The reaction synthesized $B_4C$ composites comprise $B_4C$, $TiB_2$, SiC and graphite by the reaction between TiC and $B_4C$. The newly formed $TiB_2$ and graphite was embedded both inside grain and at grain boundary $B_4C$. The mechanical properties of reaction synthesized $B_4C-TiB_2-SiC$-graphite composites were more enhanced compared to those of monolithic $B_4C$.

  • PDF

Properties of Electro-Conductive $SiC-ZrB_2$ Composites (전도성(電導性) $SiC-ZrB_2$ 복합체(複合體)의 특성(特性))

  • Shin, Yong-Deok;Park, Yong-Kap
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1512-1515
    • /
    • 1996
  • Dense $SiC-ZrB_2$ electro-conductive ceramic composites were obtained by hot pressing for high temperature structural application. The influences of the $ZrB_2$ additions an the mechanical and electrical properties of $SiC-ZrB_2$ composites were investigated. Samples were prepared by adding 15, 30, 45 vol.% $ZrB_2$ particles as a second phase to a SiC matrix. Sintering of monolithic SiC and $SiC-ZrB_2$ composites were achieved by hot pressing under a $10^{-4}$ torr vacuum atmosphere from 1000 to $2000^{\circ}C$ with a pressure of 30 MPa and held for 60 minutes at $2000^{\circ}C$. SiC and $SiC-ZrB_2$ samples obtained by hot pressing were fully dense with the relative densities over 99%. Flexural strength and fracture toughness of the samples were improved with the $ZrB_2$ contents. In the case of SiC sample containing 30vol.% $ZrB_2$, the flexural strength and fracture toughness showed 45% and 60% increase, respectively compared to those of monolithic SiC sample. The electrical resistivities of $SiC-ZrB_2$ composites were measured utilizing the four-point probe method and they decreased significantly with Increasing $ZrB_2$ contents. The resistivity of SiC-30vol.% $ZrB_2$ showed $6.50{\times}10^{-4}{\Omega}{\cdot}cm$.

  • PDF

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.

Immunohistochemical Study of C-erbB-2 and VEGF Expression in Non-Small Cell Lung Cancer (비소세포 폐암에서 C-erbB-2와 VEGF 발현에 대한 면역조직화학적 연구)

  • Shin, Jong Wook;Ha, Kyung Won;Choi, Jae Cheol;Kim, Jae Yeol;Park, In Whon;Choi, Byoung Whui;Yoo, Jae Hyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • Background: Mutated or deregulated expression of C-erbB-2 causes this gene to function as a potent oncogene. Vascular endothelial growth factor (VEGF) is a crucial angiogenic molecule in lung cancer. Both C-erbB-2 and VEGF can promote growth, proliferation and metastasis in non-small cell lung cancer (NSCLC). The purpose of this study was to investigate evaluate the relationship between the expressions of the C-erbB-2 and VEGF genes using immunohistochemistry. Materials and Methods: Ninety-five patients with NSCLC were involved (60 squamous cell carcinoma and 35 adenocarcinoma). The formalin-fixed paraffin embedded specimens were immunohistochemically stained for C-erbB-2 and VEGF using the avidin-biotin complex method. Results: Positive C-erbB-2 expression was observed more often in adenocarcinomas than squamous cell carcinomas (p<0.05). Although the immunohistochemical expressions of C-erbB-2 and VEGF in non-small-cell lung cancer showed increased tendencies at an advanced stage, the correlation between early and advanced cancers was insignificant. In adenocarcinomas, the expressions of VEGF and C-erbB-2 were significantly (p<0.05). Conclusion: The overexpression fo C-erbB-2 was significantly higher in adenocarcinomas than squamous cell carcinomas, and correlated with the expression of VEGF in adenocarcinomas of the lungs.

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Park, S.D.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.