• Title/Summary/Keyword: B1 Type Mobile Harbor

Search Result 2, Processing Time 0.015 seconds

A Size Simulation of Automatic Storage and Retrieval System for a B1 Type Mobile Harbor (반잠수식(B1) 모바일 하버에 도입될 자동창고 시스템의 크기 결정을 위한 시뮬레이션)

  • KIM, Dae-hwan;HAN, Soon-hung;CHUNG, Hyun
    • The Journal of shipping and logistics
    • /
    • v.27 no.1
    • /
    • pp.79-98
    • /
    • 2011
  • The volume of the world's container transportation has been increasing. To serve this transportation need, the size of the container carrier is getting larger. The global ports are required to deepen the waterways as well as to prepare infrastructure to serve these super-size container carriers. However, few ports around the world could meet the requirements. To solve these difficulties, the concept of the Mobile Harbor has been developed. An onboard Automatic Storage and Retrieval System(AS/RS) has been proposed for the B1 type Mobile Harbor to maximize the container throughput within the limited space of the Mobile Harbor. A scenario of operations and freight movements of the B1 type Mobile Harbor is prepared and the storage size of the B1 type Mobile Harbor through the computer simulation is estimated. The size of the Mobile Harbor and the size of the AS/RS has also been estimated. The optimized size of the Mobile Harbor could be proposed.

The Conceptual Design of Semi-submersible Type Mobile Harbor Using Axiomatic Design Principles (공리설계를 이용한 반잠수식 모바일하버의 개념설계)

  • Lee, Joo-Hee;Yoon, Seong-Jin;Chung, Hyun;Lee, Phill-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The axiomatic design principles are applied to the conceptual design of semi-submersible type mobile harbor (B1). The process of how the design of mobile harbor is elaborated, evaluated and improved from the very beginning is presented in this paper. The concept of mobile harbor is a functional harbor, which can move to a container ship anchoring out of ports in the deep water to load/unload containers on sea and transfer them to their destination ports. This floating system will innovate the maritime transport and distribution since it will greatly enhance the accessibility of super-sized container ships to existing harbors and harbors without enough infrastructures. Designing a mobile system which can perform the functions of traditional harbors on the floating system requires innovative ideas as well as rigorous validations of each sub systems. In order to enhance the chance of design success, we try to satisfy the design axioms in early stage of conceptual design. We use the zigzagging process for defining Functional Requirements (FR)-Design Parameters (DP) hierarchy due to the complexity of the system. In other words, we decomposed the complexity of the design by FR-DP hierarchy and reduced coupled design logically and systematically. This paper shows applicability of the axiomatic design principles to the field of ocean systems engineering.