• 제목/요약/키워드: B.thuringiensis subsp

검색결과 77건 처리시간 0.027초

액상 및 반고체배지 발효에 의한 Bacillus thuringiensis 살충제의 제조 (Formulations of Bacillus thuringiensis Insecticides by Liquid and Semi-Solid Fermentations.)

  • 이형환
    • 한국미생물·생명공학회지
    • /
    • 제26권4호
    • /
    • pp.369-372
    • /
    • 1998
  • Microbial insecticide formulations were prepared by liquid and semi-solid fermentations using Bacillus thuringiensis subsp. kurstaki, HL-106 (BTK-HL106), B. thuringiensis subsp. israelensis HL-63 (BTI-HL63) and B. sphaericus 1593 (BS-1593) strains. The liquid fermentation medium contained molasses 2%, dextrose 1.5%, peptone 2%, D-xylose 0.025%, CaCl$_2$ 0.1%, K$_2$HPO$_4$ 0.1%, KH$_2$PO$_4$ 0.1%, MgSO$_4$$.$7H$_2$O 0.03%, FeSO$_4$$.$7H$_2$O 0.002%, ZnSO$_4$$.$7H$_2$O 0.02%. The composition of the semi-solid fermentation medium was rice bran 45.2%, zeolite 31%, yeast powder 0.02%, corn powder 5%, dextrose 3%, lime 0.3%, NaCl 0.06%, CaCl$_2$ 0.02%, and H$_2$O 15.42%. Insecticide formulations produced in the liquid fermentation named BTK-HL106, BTI-HL63 and BS-1593 pesticides and those in the semi-solid fermentation were designated as BTK-HL106-1, BTI-HL63-1 and BS-1593-1 pesticides, respectively. The number of spore (endotoxin crystals) was 2.65${\times}$10$\^$9/ spores per $m\ell$ in the BTK-HL106 and 3.5${\times}$10$\^$10/ in the BTK-HL106-1 3.8${\times}$10$\^$9/ spores in the BTI-HL63 and 7.0${\times}$10$\^$10/ in the BTI-HL63-1, and 7.5${\times}$10$\^$9/ in the BS-1593 and 1.4${\times}$10$\^$10/ in the BS-1593-1. The spores in the BS-1593 formulation was produced two times more than the other formulations. The spores in the BTI-HL63-1 were contained twice than those in the BTK-HL106-1, and five times than those in the BS-1593-1. The results indicated that spore (endotoxin crystals) productions in the semi-solid fermentation increased about ten times than those in the liquid fermentations. $LC_{50}$s of the BTI-HL63 and BS-1593 were 4.5 $\mu\textrm{g}$, and those of the BTI-HL63-1 and BS-1593-1 were 1.5 $\mu\textrm{g}$. $LC_{50}$ of the BTK-HL106 was 1.5 mg and that of the BTK-HL106-1 was 0.9 mg. The $LC_{50}$s of the formulations in the semi-solid fermentations showed about two to three times higher than those in the liquid fermentations.

  • PDF

Construction of a Baculovirus Hyphantria cunea NPV Insecticide Containing the Insecticidal Protein Gene of Bacillus thuringiensis subsp. kurstaki HD1

  • Lee, Hyung-Hoan;Moon, Eui-Sik;Lee, Sung-Tae;Hwang, Sung-Hei;Cha, Soung-Chul;Yoo, Kwan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.685-691
    • /
    • 1998
  • Baculovirus Hyphantrin. cunea nuclear polyhedrosis virus (HcNPV) insecticide containing the insecticidal protein (ICP) gene from Bacillus thuringiensis subsp. kurstaki HD1 was constructed using a lacZ-HcNPV system. The ICP ($\delta$-endotoxin) gene was placed under the control of the polyhedrin gene promoter of the HcNPV. A polyhedrin-negative virus was derived and named ICP-HcNPV insecticide. Then, the insertion of the ICP gene in the ICP-HcNPV genome was confirmed by Southern hybridization analysis. Polyacrylamide gel electrophoresis (PAGE) analysis of the Spodoptera frugiperda cell extracts infected with the ICP-HcNPV showed that the ICP was expressed in the insect cells as 130 kDa at 5 days post-infection. The ICP produced in the cells was present in aggregates. When extracts from the cells infected with the ICP-HcNPV were fed to 20 Bombyx mori larvae, the following mortality rate was seen; 8 larvae at 1 h, 10 larvae at 3 h, and 20 larvae at 12 h. These data indicate that the B. thuringiensis ICP gene was expressed by the baculovirus insecticide in insect cells and there was a high insecticidal activity. The biological activities of the recombinant virus ICP-HcNPV were assessed in conventional bioassay tests by feeding virus particles and ICP to the insect larvae. The initial baculovirus insecticide ICP-HcNPV was developed in our laboratory and the significance of the genetically engineered virus insecticides is discussed.

  • PDF

Intermolecular Interaction Between Cry2Aa and Cyt1Aa and Its Effect on Larvicidal Activity Against Culex quinquefasciatus

  • Bideshi, Dennis K.;Waldrop, Greer;Fernandez-Luna, Maria Teresa;Diaz-Mendoza, Mercedes;Wirth, Margaret C.;Johnson, Jeffrey J.;Park, Hyun-Woo;Federici, Brian A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1107-1115
    • /
    • 2013
  • The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that has evolved in Culex quinquefasciatus. It is also known that Cyt1Aa, which is highly lipophilic, synergizes Cry11Aa by functioning as a surrogate membrane-bound receptor for the latter protein. Little is known, however, about whether Cyt1Aa can interact similarly with other Cry proteins not primarily mosquitocidal; for example, Cry2Aa, which is active against lepidopteran larvae, but essentially inactive or has very low toxicity to mosquito larvae. Here we demonstrate by ligand binding and enzyme-linked immunosorbent assays that Cyt1Aa and Cry2Aa form intermolecular complexes in vitro, and in addition show that Cyt1Aa facilitates binding of Cry2Aa throughout the midgut of C. quinquefasciatus larvae. As Cry2Aa and Cry11Aa share structural similarity in domain II, the interaction between Cyt1Aa and Cry2Aa could be a result of a similar mechanism previously proposed for Cry11Aa and Cyt1Aa. Finally, despite the observed interaction between Cry2Aa and Cyt1Aa, only a 2-fold enhancement in toxicity resulted against C. quinquefasciatus. Regardless, our results suggest that Cry2Aa could be a useful component of mosquitocidal endotoxin complements being developed for recombinant strains of B. thuringiensis subsp. israelensis and B. sphaericus aimed at improving the efficacy of commercial products and avoiding resistance.

Spacing Effect of the Intervening Sequences between Ribosome Binding Site and the Initiation Codon on Expression of Bacillus thuringiensis $\delta$-Endotoxin

  • Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Park, Jae-Young;Shim, Hee-Jin;Woo, Soo-Dong;Boo, Kyung-Saeng;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제6권1호
    • /
    • pp.81-85
    • /
    • 2003
  • To verify importance of the intervening sequence between the ribosome binding site (RBS) and the initiation codon for expression of Bacillus thuringiensis $\delta$-endotoxin, the pProMu, containing SphI and NcoIsites between RBS and the initiation codon of the cry1Ac gene, and the deletion derivatives of pProMu were constructed and transformed into the B. thuringiensis subsp. kurstaki $Cry^{-B}$ strain. The pProMu-ΔSphIhad identical six bases of intervening sequence to pProAc though the arrangement of sequence was different. Other mutants containing pProMu had 1 or 10 or 14 bases between RBS and the initiation codon. Among deletion mutants, only ProMu-ΔSphI/CB only produced 130 kDa typical bipyramidal crystals like those seen for ProAc/CB. However, ProMu/CB, $ProMu-{\Delta}NcoI$, and ProMu-ΔSphI+NcoIdid not produce Cry1Ac crystals. In conclusion, the results suggest that 6-base intervening sequence was important for expression of cry1-type class gene. Furthermore, spacing effect of the intervening sequences may play an important role in expression of individual crystal proteins in B. thuringiensis without doubt.

Meloidogyne hapla 독성세균의 분리 동정 및 독성물질의 정제 (The Toxin Purification and Isolation Identification of Meloidogyne hapla Toxicity Bacteria)

  • 이광배
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.32-39
    • /
    • 1999
  • The following is experimental result of selecting soil bacteria showing toxicity against Root-knot nematode (Meloidogyne hapla). Out of 286 strains isolated from soil, one(NC67) showing toxicity against M.hapla is selected The selected strain(NC67) is identified of B. thuringiensis subsp. indiana. It proved out that the toxic maerial against M. hapla produce by NC67 strain is an exotoxin. The result of examining the existence of the extercellular toxicity product by the toxic strain(NC67) by usign activated carbon column chromatography, Dowex 50W column chromatography and TLC of silical gel etc. proved out that it is a single material.

  • PDF

Molecular Characterization of Novel Insecticidal Cryl-Type Genes from Bacillus Thuringiensis K1

  • Li, Ming-Shun;Park, Jae-Young;Roh, Jong-Yul;Shim, Hee-Jin;Boo, Kyung-Saeng;Je, Yeon-Ho
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.72-72
    • /
    • 2003
  • A new Bacillus thuringiensis strain (Kl), having high toxicities to Plutella xylostella and Spodoptera exigua was isolated from Korean soil sample. It was determined to belong to subsp. kurstaki (H3a3b3c) and produced bipyramidal inclusion. PCR-RFLP analysis showed that this isolate contains three novel cryl-type crystal protein genes in addition to crylAa and crylE genes. (omitted)

  • PDF

국내 농작물의 근부토양에서 분리한 Pseudomonas 내에서의 Bacillus thuringiensis 독소단백질 유전자의 발현 (Expression of the Bacillus thuringiensis Crystal Protein Gene in Pseudomonas Isolated from Rhizosphere Soil of Korean Crops)

  • Tag, Koo-Bon;Shin, Byung-Sik;Park, Seung-Hwan;Park, Ho-Yong;Kim, Jeong-Il
    • 한국미생물·생명공학회지
    • /
    • 제17권4호
    • /
    • pp.295-300
    • /
    • 1989
  • B. thuringiensis가 생산하는 살충성 독소 단백질의 생태학적 응용방법을 개발하기 위한 목적으로 우선 독소 단백질 유전자를 옮겨 발현시키기에 적합한 숙주 미생물의 분리작업을 수행하였다. 국내 주요농산물인 고추, 감자, 무우 등 7가지 농작물의 뿌리부근에 군락을 형성하는 35종의 형광성Pseudomonas들을 분리하였고 독소 단백질 유전자를 함유하는 재조합 plasmid에 대한 숙주로서의 이응가능성을 검토해 보기 위하여 분리균주 35주에 대한 형질전환을 실시한 결과 4주에 독소 단백질 유전자의 도입이 가능하였고 생물검정과 면역학적인 방법 등에 의한 결과 BT 독소 유전자의 발현을 확인하였다.

  • PDF

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

Redesign of an Interhelical Loop of the Bacillus thuringiensis Cry4B delta-endotoxin for Proteolytic Cleavage

  • Krittanai, Chartchai;Lungchukiet, Panida;Ruangwetdee, Sarinthip;Tuntitippawan, Tipparut;Panyim, Sakol;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제34권2호
    • /
    • pp.150-155
    • /
    • 2001
  • The mosquito-larvicidal Cry4B protein from Bacillus thuringiensis subsp. israelensds was expressed in Escherichia coli. Upon activation by trypsin, the 130-kDa protoxin was processed into the 65-kDa active toxin containing two polypeptide fragments of ca. 47 and ca. 20 kDa. These two polypeptides are products of internal cleavages on the exposed loop connecting helices 5 and 6 in the seven-helical bundle domain. PCR-based mutagenesis was employed to introduce an additional cleavage site into the loop connecting helices 3 and 4. A series of amino acid changes were introduced into the targeted loop, resulting in seven mutant protoxins. Upon digestion with trypsin, a group of mutants with arginine introduced into the loop (EPRNQ, EPNRNQ, EPRNP, ESRNP and SSRNP) produced polypeptide products similar to those of the wild type (EPNNQ). When the loop, SSRNP, was expanded by an insertion of either asparagine (NSSRNP) or valine (VSSRNP), an additional cleavage was detected with proteolytic products of 47,12 and 6 kDa. This cleavage was confirmed to be at the introduced arginine residue by N-terminal sequencing. The mosquito larvicidal assay against Aedes aegypti demonstrated a relatively unchanged toxicity for the mutants without cleavage and reduced toxicity for those with an additional cleavage.

  • PDF

구기자(Lycium chinense Mill.) 유기재배시 병해충 발생 및 친환경제제의 방제효과 (Studies on Outbreak of Diseases and Pests and Effect of Environmental Friendly Control Materials in Boxthorn (Lycium chinenseMill.) Organic Cultivation)

  • 이보희;박영춘;이석수;김영국;안영섭;유승헌
    • 한국유기농업학회지
    • /
    • 제19권3호
    • /
    • pp.385-396
    • /
    • 2011
  • 본 연구는 구기자 유기재배 시 발생하는 주요 병해충에 대해 친환경적인 방제방법을 개발하기 위해서 수행하였다. 관내 주요 유기재배 농가의 병해충의 발생을 조사한 결과 18종의 병해충이 조사되었는데 그 중 발생의 정도에 따라 병해로 흰가루병과 뒷면곰팡이병 해충으로 복숭아혹진딧물과 꽃노랑총채벌레 및 나방류가 친환경적인 방제연구가 필요하였다. 이에 방제 시험한 결과 초여름 발생하는 흰가루병에는 Bacilus subtilis QST 713 수화제와 Sulfur 수화제가 효과가 좋았고 초가을에 발생하는 흰가루병에는 Sulfur 수화제와 Copper hydroxide 수화제, Paraffinic oil 유제의 효과가 좋았다. 또한 뒷면곰팡이병 방제시험 결과 Paraffinic oil 유제와 Bacilus subtilis GB-0365 액상수화제의 방제효과가 70% 이상으로 좋았다. 해충 친환경 방제시험에서 총채벌레의 방제에 천적인 유럽애꽃노린재(Orius laevigatus)를 방사하여 80%이상 방제가능 하였다. 왕담배나방은 미생물농약인 Bacillus thuringiensis subsp. aizawai GB413 액상수화제와 Bacillus thuringiensis aizawa 0423 수화제로 70%이상의 방제가로 방제할 수 있었으며, 구기자 뿔나방(Hedma lycia sp.)은 B.T. servar aizawai 수화제가 70% 이상의 방제가로 효과가 우수하였다. 마지막으로 복숭아혹진딧물을 친환경제제로 방제 시험한 결과 Bacillus subtilis(Seoncho)와 Bacillus subtilis(Jinsami)가 80%이상의 방제가로 약효가 우수하였으며 Ginkgo nut extract로도 70%이상 방제할 수 있었다. 이상의 방제시험으로 구기자 유기재배시 우선 문제되는 5종의 병해충에 대해서 방제방법을 제시할 수 있었다.