• Title/Summary/Keyword: B.Arch

Search Result 114, Processing Time 0.023 seconds

The Frozen Elephant Trunk Technique: European Association for Cardio-Thoracic Surgery Position and Bologna Experience

  • Marco, Luca Di;Pantaleo, Antonio;Leone, Alessandro;Murana, Giacomo;Bartolomeo, Roberto Di;Pacini, Davide
    • Journal of Chest Surgery
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Complex lesions of the thoracic aorta are traditionally treated in 2 surgical steps with the elephant trunk technique. A relatively new approach is the frozen elephant trunk (FET) technique, which potentially allows combined lesions of the thoracic aorta to be treated in a 1-stage procedure combining endovascular treatment with conventional surgery using a hybrid prosthesis. These are very complex and time-consuming operations, and good results can be obtained only if appropriate strategies for myocardial, cerebral, and visceral protection are adopted. However, the FET technique is associated with a non-negligible incidence of spinal cord injury, due to the extensive coverage of the descending aorta with the excessive sacrifice of intercostal arteries. The indications for the FET technique include chronic thoracic aortic dissection, acute or chronic type B dissection when endovascular treatment is contraindicated, chronic aneurysm of the thoracic aorta, and chronic aneurysm of the distal arch. The F ET technique is also indicated in acute type A aortic dissection, especially when the tear is localized in the aortic arch; in cases of distal malperfusion; and in young patients. In light of the great interest in the FET technique, the Vascular Domain of the European Association for cardio-thoracic Surgery published a position paper reporting the current knowledge and the state of the art of the FET technique. Herein, we describe the surgical techniques involved in the FET technique and we report our experience with the F ET technique for the treatment of complex aortic disease of the thoracic aorta.

Self-propulsion Test and Analysis of Amphibious Armored Wheeled Vehicle with Propulsion System of POD Type Waterjet (전투 차량용 포드형 물 분사 추진장치의 모형시험 및 해석)

  • Byun, Tae-Young;Kim, Moon-Chan;Chun, Ho-Hwan;Kim, Jong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • A waterjet propulsion system has many advantages compared with a conventional screw propeller especially for amphibious armored wheeled vehicles because of a good maneuverability at low speed, good operation ability at shallow water, high thrust at low speed to aid maneuverability and exit from water, etc. The POD type waterjet is adequate for the present wheeled vehicle because the weight is lighter and L/B is longer than the conventional armored amphibious vehicle. Resistance and self-propulsion tests with a 1/3.5-scale model are conducted at PNU towing tank. Based on these measurements, the performance is analyzed according to ITTC 96 standard analysis method and also according to the conventional propulsive factor analysis method. Based on these two methods, the full-scale effective and delivered powers of amphibious armored wheeled vehicle are estimated. This paper emphasizes the analysis method of model test of the waterjet propulsion system for a amphibious armored wheeled vehicle and the model test technique together with the comparison of the two analysis methods.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

An Analytical Study on the Shear Capacity of Reinforced Concrete Member with Small Shear Span Ratio (전단스팬비가 작은 철근콘크리트 부재의 전단내력평가에 관한 해석적 연구)

  • 강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.193-202
    • /
    • 1994
  • In this study, an equation for modelling the shear strength of reinforced concrete member with web reinforcement is proposed. Although the general formulas for shear strength of reinforced concrete member with small a /d are obtained based on the experimental results, the proposed equation herein is derived from lower bound theorem of limit analysis. The proposed model takes into account arch mechanism and truss mechanism. And ir provides the values of divided shear strength ratio of each mechanism as well as visual understanding of the mechanism on how the given load is transfered to the support. Also, the model takes into account the effect of a /d. longitudinal reinforcement ratio, and web reiriforcement ratio quantitively. Based on the comparisons of the result of this model with previous, test results, it shows good agreements.

Distal Aortic Remodeling after Type A Dissection Repair: An Ongoing Mirage

  • Rathore, Kaushalendra Singh
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.439-448
    • /
    • 2021
  • Remodeling is a commonly encountered term in the field of cardiothoracic surgery that is often used to describe various pathophysiological changes in the dimension, structure, and function of various cardiac chambers, including the aorta. Stanford type A or DeBakey type 1 aortic dissection (TAAD) is a perplexing pathologic condition that can present surgical teams with the need to navigate a maze of complex decision-making. Ascending or hemi-arch replacement leaves behind a significant amount of distal diseased aortic tissue, which might have a persistent false lumen or primary or secondary intimal tears (or communications between lumina), which can lead to dilatation of the aortic arch. Unfavorable aortic remodeling is a major cause of distal aortic deterioration after the index surgery. Cardiac surgeons are aware of post-surgical cardiac chamber remodeling, but the concept of distal aortic remodeling is still idealized. The contemporary literature from established aortic centers supports aggressive management of the residual aortic pathology during the index surgery, and with continuing technical advancements, endovascular stenting options are readily available for patients with TAAD or for complicated type B aortic dissection cases. This review discusses the pathophysiology and treatment options for favorable distal aortic remodeling, as well as its impact on mid- to long-term outcomes following TAAD repair.

Investigation of soil behaviour due to excavation below the grouped pile according to shape of tunnel station (터널 정거장 형상에 따른 군말뚝 하부 굴착 시 지반거동 연구)

  • Kong, Suk-Min;Oh, Dong-Wook;Lee, Jong-Hyen;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.83-97
    • /
    • 2018
  • Tunnels are widely used for special purposes including roads, railways and culvert for power transmission, etc. Its cross-section shape is determined by uses, ground condition, environmental or economic factor. Many papers with respect to behaviours of adjacent ground and existing structure tunnelling-induced have been published by many researchers, but tunnel cross-section have rarely been considered. A collapse of tunnel causes vaster human and property damage than structures on the ground. Thus, it is very important to understand and analyse the relationship between behavoiurs of ground and cross-section type of tunnel. In this study, the behaviour of ground due to tunnel excavation for underground station below the grouped pile supported existing structure was analysed through laboratory model test using a trap-door device. Not only two cross-section types, 2-arch and box, as station for tunnel, but also, offset between tunnel and grouped pile centre (0.1B, 0.25B, 0.4B) are considered as variable of this study. In order to measure underground deformation tunnelling-induced, Close Range Photogrammetry technique was applied with laboratory model test, and results are compared to numerical analysis.

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.

A Case of Vascular Ring Associated with Tracheitis Due to Type b Haemophilus influenzae (헤모필루스 인플루엔자 기관염이 확인되면서 진단된 혈관륜 1례)

  • Kim, Su Hyun;Chung, Yoon Sook;Oh, Sung Hee;Kim, Nam Su;Kim, Hyuck
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.2
    • /
    • pp.261-266
    • /
    • 2002
  • Vascular ring, originating from abnormal regression of the aortic arch during fetal life, can cause prolonged and recurrent respiratory symptoms and dysphagia when the diagnosis is delayed. We report a 4 month old girl with vascular ring, who had been treated for persistent respiratory symptoms including stridor, wheezing, and dyspnea soon after birth. Initially her respiratory symptoms were thought to be due to bronchiolitis, for which respiratory syncytial virus was confirmed by immunofluorescent staining. Her clinical course was again complicated with tracheitis and pneumonia due to Haemophilus influenzae type b. The possibility of anatomical anomaly was investigated when it was felt to be difficult to insert a suction catheter deep down through a endotracheal tube which was placed for adequate ventilatory management. A three-dimensional chest CT revealed a vascular ring consisting of a double aortic arch. For 5 months following surgery, her respiratory symptoms have slowly been improving. She developed another episode of pneumonia which was milder than the one which occurred before the surgery.

Modeling of the Artery Tree in the Human Upper Extremity and Numerical Simulation of Blood Flow in the Artery Tree (상지동맥 혈관계의 모델링과 혈유동의 전산수치해석)

  • Kim, Keewon;Kim, Jaeuk U.;Beak, Hyun Man;Kim, Sung Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.221-226
    • /
    • 2016
  • Since arterial disease in the upper extremity is less common than that in the lower extremity, experimental and numerical investigations related to upper extremity have been rarely performed. We created a three-dimensional model of the arteries, larger than approximately 1 mm, in a Korean adult's left hand (from brachial to digital arteries), from 3T magnetic resonance imaging (MRI) data. For the first time, a three-dimensional computational fluid dynamic method was employed to investigate blood flow velocity, blood pressure variation, and wall shear stress (WSS) on this complicated artery system. Investigations were done on physiological blood flows near the branches of radial and deep palmar arch arteries, and ulnar and superficial palmar arch arteries. The flow is assumed to be laminar and the fluid is assumed to be Newtonian, with density and viscosity properties of plasma.