• Title/Summary/Keyword: B. Graphite

Search Result 191, Processing Time 0.019 seconds

Structure of a Copper(Ⅱ) Hexaazamacrotricyclic Complex : (1,3,6,9,11,14-Hexaazatricyclo[12.2.1.16,9]octadecane)-copper(Ⅱ) Perchlorate

  • Cheon Manseog;Suh Paik Myunghyun;Shin Whanchul
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.363-367
    • /
    • 1992
  • The crystal structure of (1,3,6,9,11,14-hexaazatricycol[12.2.1.$1^{6,9}$]octadecane)copper(Ⅱ) perchlorate, Cu($C_{12}H_{26}N_6$)$(ClO_4)_2$, has been determined by the X-ray diffraction methods. The crystal data are as follows: Mr=516.9, triclinic, ${\alpha}=8.572\;(2)$, b=8.499 (3), c=15.204 (3) ${\AA}$, ${\alpha}=80.42\;(5),\;{\beta}=73.57\;(3),\;{\gamma}=69.82\;(4)^{\circ},\;V=994.2\;{\AA}^3,\;D_C=1.726\;gcm^{-3}$, space group $P{\tilde{1}},\;Z=2,\;{\mu}=21.27\;cm^{-1}&, F(000)=534 and T=297 K. The structure was solved by direct methods and refined by full-matrix least-squares methods to and R value of 0.081 for 1608 observed reflections measured with graphite-mono-chromated Mo Ka radiation on a diffractometer. There are two independent complexes in the unit cell. The two copper ions lie at the special positions (1/2, 0, 0) and (0, 1/2, 1/2)and each complex possesses crystallographic center of symmetry. Each Cu ion is coordinated to four nitrogen donors if the hexaazamacrotricyclic ligand and weakly interacts with two oxygen atoms of the perchlorate ions to form a tetragonally distorted octahedral coordination geometry. The Cu_N (sec), Cu_N(tert) and Cu_O coordination distances are 1.985 (14), 2.055 (14) and 2.757 (13) ${\AA}$ for the complex A and 1.996 (10), 2.040 (11) and 2.660 (13) ${\AA}$ for the complex B, respectively. The macrocycles in the two independent cations assume a similar conformation with the average r.m.s. deviation of 0.073 ${\AA}$. Two 1,3-diazacyclopentane ring moieties of the hexaazamacrotricyclic ligand are placed oppositely and almost perpendicularly to the square coordination plane of the ruffled 14-membered macrocycle. The secondary N atoms are hydrogen-bonded to the perchlorate O atoms with distances of 3.017 (23) and 3.025 (19) ${\AA}$ for the complexes A and B, respectively.

Relation between Metamorphic P-T Conditions and Boron Concentrations of Metasedimentary Rocks and Biotite Granitic Gneisses from NE Yeongnam Massif around Samcheok Area, South Korea (영남 육괴 북동부 변성퇴적암과 흑운모 화강편마암의 변성 온도-압력 조건과 전압 붕소 함량사이의 상관관계)

  • Cheong, Won-Seok;Sun, Gwang-Min;Na, Ki-Chang
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.247-259
    • /
    • 2009
  • This study is focused on the relationship between whole rock boron contents and metamorphic P-T conditions of metasedimentary rocks from northeastern Yeongnam massif around Samcheok area, Korea. Metamorphic P-T conditions of sillimanite and garnet zones based on the Ti-biotite geothermometer is 553-687$^{\circ}C$ and 582-722$^{\circ}C$ at 4-6 kbar, respectively. In the metasedimentary rocks, boron contents in whole rock decrease with increasing metamorphic grade, from sillimanite zone (9.60-189 ppm B) to garnet zone (2.63-15.97 ppm B), except one sample (90.9 ppm B) from garnet zone containing graphites. Boron depletion in garnet zone has relation with mode of tourmaline which are broken down with increasing metamorphic temperature. Boron contents are indirectly proportional to major and trace elements such as $Al_2O_3$, MgO, $Fe_2O_3$, $K_2O$, Li, Ba, Sc, Co, Cr, Rb and Cs that are abundant in tourmalines. In conclustion, tourmalines and graphite are modulator of boron contents in metasedimentary rocks. In the biotite granitic gneisses, boron contents (2.62-12.2 ppm B) are similar or lower than those of metasedimentary rocks and have no relation with metamorphic P-T conditions.

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

Influnce of machinability on the Tool life of ADI Materials in Drilling (ADI 재료의 드릴 가공시 절삭특성이 공구수명에 미치는 영향)

  • 조규재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • Drilling tests were carried out austempered ductile castiron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austenized at 90$0^{\circ}C$ for 1 hour and then wear was kept at 375$^{\circ}C$ for 2 hours. Austempered ductile cast iron contains a great deal of retaine austenite which contributes to an improvement of impact strength, In this paper, machinability of ADI was investigated by drilling experimentation. The results obtained are as follows: a)Flank wear increases logarithmically with the increases of cutting time. b) Relation of flank wear and cutting force can be appiled to $F_z$ = 925VB + 820 for the cutting suggested condition. c) Drilling hole number of about 2 times can be reduced more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF

A study on the Polymer surface treatment of GF-filter bag for collection of fine Particle like carbon black (카본블랙류 미세입자 포집을 위한 유리섬유 필터백의 고분자 표면처리에 관한 연구)

  • Lee, B.;Choi, H.L.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.55-59
    • /
    • 2008
  • In this paper, we have investigated on collection efficiency of fine particle of glass fiber-filter bag according to the surface treatment. The solution consisted of polytetrafluoroethylene(teflon), graphite powder, silicon resin and water was used as a basic surface treatment agent. Tensile strength of glass filter-bag increased with up to 3hrs and then decreased with surface treatment time. Tensile strength and initial modulus of the glass fiber-filter bag treated by iodine after basic surface treatment for 3hrs were lower than those of basic surface treatment for 3hrs, however collection efficiency and fracture strain were higher than those of basic surface treatment for 3hrs. Glass fiber-filter bag with lower initial modulus and more strain will be extend the durable period and the one treated by iodine after basic surface treatment 3or 3hrs is expected high collection efficiency of fine particle. This method makes it possible to manufacture glass fiber-filter bag of the optimum condition.

  • PDF

Preparation and Characterization of β-C3N4 in Presence of Seed Carbon Nitride Films Deposited by Laser-Electric Discharge Method

  • Kim, J.I.;Zorov, N.B.;Burdina, K.P
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure was developed for preparing bulk carbon nitride crystals from a polymeric $\alpha$ -C$_3$N$\_$4.2/ at high pressure and temperature in the presence of seeds of crystalline carbon nitride films prepared by a high voltage discharge plasma combined with pulsed laser ablation of graphite target. The samples were evaluated by x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrate that the nitrogen composition in $\alpha$ -C$_3$N$\_$4.2/ material initially containing more than 58% nitrogen decreases during the annealing process and reaches a common, stable composition of ~45%. The thermobaric experiments were performed at 10-77 kbar and 350-1200 $\^{C}$.

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

The Crystal and Molecular Structure of 1-(3-Chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (Ornidazole), $C_7H_{10}CIN_3O_3$

  • 신현소;송현;김의성;정광보
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.912-915
    • /
    • 1995
  • Ornidazole, C7H10ClN3O3, crystallizes in the triclinic, space group P1^, with a=13.605(2), b=14.054(1), c=8.913(5) Å, α=71.59(2), β=78.73(2), γ=64.86(1)°, μ=3.26 cm-1, Dc=1.499 g/cm3, Dm=1.497g/cm3, F(000)=684, and z=6. Intensities for 2693 unique reflections were measured on a CAD4 diffractometer with graphite-monochromated Mo-Kα radiation. The structure was solved by direct method and refined by block-diagonal least squares to a final R of 0.081 (Rw=0.047) for 1952 reflections with Fo>3σ (Fo). The asymmetric unit contains three independent molecules of the title compound. The bond lengths and bond angles are comparable with the values found in the other nitro-substituted compounds. The nitro groups are rotated (6.9°, 6.6°, 2.6° for the three independent molecule, respectively) about the C-N axes from the imidazole planes. The crystal structures are linked by two intermolecular hydrogen bonds of O-H---N type and one intermolecular hydrogen bond of O-H---O type.

Crystal Structure of 3-[4-(2-Ethoxy-2-phenylethyl)-1-piperazinyl]-2-methyl-1-phenyl-1-propanone (Eprazinone) dihydrochloride, $C_{24}H_{32}N_2O_2$·2HCl

  • Euisung Kim;Hyun Song;Choong-Souh Yun;Hyun-So Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.371-373
    • /
    • 1991
  • The crystal structure of eprazinone dihydrochloride, $C_{24}H_{32}N_2O_2$${\cdot}$2HCl, has been determined from 2102 independent reflections collected on an automated Nonious CAD-4 diffractometer using graphite-monochromated $Mo-K\alpha$ radiation. The crystals are monoclinic, space group P$2_1$/n, with unit cell dimensions a=11.381(2), b=28.318(2), c=7.840(1) $\AA$, $\beta=92.45(2)^{\circ}$, ${\mu}=2.37$ c$m^{-1}$, F(000)=968, and Z=4. Final R value is 0.071 for independent 2102 observed reflections. The molecule assumes an extended conformation. The piperazine ring has a normal chair conformation and the four carbon atom are planar with a maximum displacement of 0.004 $\AA$ for C(18) atom. The two chloride ions are hydrogen bonded to the two piperazine nitrogen atoms [N(14)${\cdot}{\cdot}{\cdot}$Cl(1); 2.986(6) $\AA$ N(17)…Cl(2); 3.084(8) $\AA$].

The Crystal Structure of Cholesteryl Aniline

  • Park, Young-Ja;Kim, Sang-Soo;Lee, Seung-Bun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 1990
  • Cholesteryl aniline ($C_{33}H_{51}N$) is monoclinic, space group $P2_1$, with a = 9.020(3), b = 6.000(1), c = 27.130(9)${\AA},\;{\beta} = 98.22(2)^{\circ}$, Z = 2, Dc = 1.06 g/cm$^3$ and Dm = 1.04 g/cm$^3$. A diffraction data set was collected with Mo-$K_{\alpha}$ radiation (${\lambda} = 0.7107 {\AA}$) on a diffractometer with a graphite monochromator to a maximum 2${\theta}$ value of 50$^{\circ}$, by the ${\omega}-2{\theta}$ scan technique. The coordinates of the non-hydrogen atoms and their anisotropic temperature factors were refined by full-matrix least-squares methods to final R of 0.058. In cholesteryl group, bond distances were normal except in tail part, where high thermal vibration resulted in apparent shortening of the C-C distances. The crystal structure consists of bilayers of thickness $d_{001} = 27.13 {\AA}$, in each of which there is the tail to tail arrangement of molecules aligned in the unit cell with their long axes approximately parallel to the [104] axis. The two halves of the double layer are related to each other by the screw axis.