• 제목/요약/키워드: B-spline surface fitting

검색결과 21건 처리시간 0.021초

Trivariate B-spline Approximation of Spherical Solid Objects

  • Kim, Junho;Yoon, Seung-Hyun;Lee, Yunjin
    • Journal of Information Processing Systems
    • /
    • 제10권1호
    • /
    • pp.23-35
    • /
    • 2014
  • Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this, we first constructed a smooth correspondence between a given object and a unit solid cube by computing their harmonic mapping. We set the unit solid cube as a rectilinear parametric domain for trivariate B-splines and utilized the mapping to approximate the given object with B-splines in a coarse-to-fine manner. Specifically, our framework provides user-controllability of shape approximations, based on the control of the boundary condition of the harmonic parameterization and the level of B-spline fitting. Experimental results showed that our method is efficient enough to compute trivariate B-splines for several models, each of whose topology is identical to a solid sphere.

Data-Driven Kinematic Control for Robotic Spatial Augmented Reality System with Loose Kinematic Specifications

  • Lee, Ahyun;Lee, Joo-Haeng;Kim, Jaehong
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.337-346
    • /
    • 2016
  • We propose a data-driven kinematic control method for a robotic spatial augmented reality (RSAR) system. We assume a scenario where a robotic device and a projector-camera unit (PCU) are assembled in an ad hoc manner with loose kinematic specifications, which hinders the application of a conventional kinematic control method based on the exact link and joint specifications. In the proposed method, the kinematic relation between a PCU and joints is represented as a set of B-spline surfaces based on sample data rather than analytic or differential equations. The sampling process, which automatically records the values of joint angles and the corresponding external parameters of a PCU, is performed as an off-line process when an RSAR system is installed. In an on-line process, an external parameter of a PCU at a certain joint configuration, which is directly readable from motors, can be computed by evaluating the pre-built B-spline surfaces. We provide details of the proposed method and validate the model through a comparison with an analytic RSAR model with synthetic noises to simulate assembly errors.

단면정보로부터 3차원 근사곡면의 생성 (3D Surface Approximation to Serial 2D Cross Sections)

  • 박형준;김광수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.719-724
    • /
    • 1994
  • This paper describes a hybrid surface-based method for smooth 3D surface approximation to a sequence of 2D cross sections. The resulting surface is a hybrid G $^{1}$ surface represented by a mesh of triangular and rectangular Bezier patches defined on skinning, branching, or capping regions. Each skinning region is approximated with a closed B_spline surface, which is transformed into a mesh of Bezier patches. Triangular G $^{1}$ surfaces are constructed over brabching and capping regions such that the transitions between each capping regions such that the transitions between each triangular surface and its neighboring skinning surfaces are G $^{1}$ continuous. Since each skinning region is represented by an approximated rectangular C $^{2}$ suface instead of an interpolated trctangular G $^{[-1000]}$ surface, the proposed method can provide more smooth surfaces and realize more efficient data reduction than triangular surfacebased method.

  • PDF

Energy Based Multiple Refitting for Skinning

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2005
  • The traditional method of manipulation of knots and degrees gives poor quality of surface, if compatibility of input curves is not good enough. In this work, a new algorithm of multiple refitting of curves has been developed using minimum energy based formulation to get compatible curves for skinning. The present technique first reduces the number of control points and gives smoother surface for given accuracy and the surface obtained is then skinned by compatible curves. This technique is very useful to reduce data size when a large number of data have to be handled. Energy based technique is suitable for approximating the missing data. The volumetric information can also be obtained from the surface data for analysis.

전역 변형을 갖는 활성곡면을 사용한 모델 적합 (Model Fitting using an Active Surface with Global Detormations)

  • 김동근;최증원;황치정
    • 한국정보처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.792-801
    • /
    • 1997
  • 본 논문에서는 전역 변형을 갖는 활성 곡면을 사용하여 잡음으로 오염된 데이터를 곡면으로 적합하는 알고리즘을 제안하였다. 이것은 2차원 곡선 모델에서 이전에 연구 [11,12]된 알고리즘의 3차원 곡면으로의 확정이다. 제안된 방법에서는 유한 차분을 사용하며, 각 노드점에서 주위의 외부힘을 사용하여 부분적으로 수축 또는 팽챙을 허용하는 balloon 모델[2,3]에 기반으로 진행하는 동안 곡면의 모양을 전역 변형 후의 곡면으로의 전역 변환이 결정적 최소 자승법에 의하여 계산되고, 마지막으로 전역 변환을 변형 전의 곡면에 적용한다. 실험에서 아핀변형을 갖는 활성 곡면을 사용하여 잡음으로 오염된 데이터를 곡면(타원체, B스플라인)으로 적합하였다.

  • PDF

보행 중 인체 슬관절의 3차원 접촉 모델 개발 (Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion)

  • 김효신;박성진;문정환
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

Efficient point cloud data processing in shipbuilding: Reformative component extraction method and registration method

  • Sun, Jingyu;Hiekata, Kazuo;Yamato, Hiroyuki;Nakagaki, Norito;Sugawara, Akiyoshi
    • Journal of Computational Design and Engineering
    • /
    • 제1권3호
    • /
    • pp.202-212
    • /
    • 2014
  • To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components' accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components' accuracy by comparing each component's point cloud data scanned by laser scanners and the ship's design data formatted in CAD cannot be processed efficiently when (1) extract components from point cloud data include irregular obstacles endogenously, or when (2) registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles' shadows. The ICP (Iterative Closest Point) algorithm conducts a registration of the two sets of data after the proper registration's direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.

Background Surface Estimation for Reverse Engineering of Reliefs

  • Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 2007
  • Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.

선형의 순정 기법에 관한 기초 연구 (A Basic Study on the Fairing Method of Ship Hull Surface)

  • 김동준;윤태경
    • 대한조선학회논문집
    • /
    • 제31권2호
    • /
    • pp.15-21
    • /
    • 1994
  • 전산기를 이용한 순정작업은 크게 두 가지로 구분할 수 있다. 첫번째는 단면곡선, 즉 2차원 곡선을 순정하고 다른 단면에서도 역시 부드러운가를 확인하는 전통적인 방법이다. 두번째는 곡면을 이용하는 것으로 전산기의 발달과 더불어 최근 많이 사용하고 있는 방법이다. 그러나 이 경우 먼저 선형을 곡면으로 정의하여야 하나 복잡한 선형의 경우 쉽지가 않다. 본 연구에서는 곡선의 순정기법을 확장하여 그물망 곡선(mesh curve)의 경우에 대해 비균일(non-uniform) B-Sp line 곡선을 이용한 Rong의 방법으로 선형의 순정작업을 행하였다. 그러나 Rong의 방법에는 곡선의 양 끝점에서의 기울기가 고정되어야 하는 제한이 있으며 곡면화 방법에 대한 기술이 명확하지 못하다. 본 연구에서는 곡선의 양끝의 기울기를 고정시키지 않고 순정작업을 할 수 있도록 하였으며, 순정된 결과를 곡면화하는 방법을 제안하였다.

  • PDF

플라우 작업 곡면의 컴퓨터 원용 설계 (Computer-Aided Design of Plow Working Surfaces)

  • 정창주;박진식;우상하
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.37-44
    • /
    • 1992
  • This study was intended to develop the design program of the working surface of moldboard-plow by use of the computer-aided design. The mathematical model of the working surfaces of moldboard-plows by use of computer graphics was developed and plotted in two dimension on three major planes. The surfaces of moldboard-plows were represented with "B-spline surface fitting" by selecting the twenty-five three-dimensional data that could well describe the working surface of moldboard-plow. The shape of moldboard-plow on three major planes was drawn for varied design parameters. The representation of the mathematical model for the working surfaces of various types of moldboard-plows was manipulated by translation, rotation and scaling about arbitrary axes in space. By using three-dimensional graphics techique to describe moldboard-plows, it was capable of plotting the three-dimensional shape of moldboard-plow easily and quickly in comparison with the existing design methods that were difficult to grasp the shape of moldboard-plow as a whole. The design theories of moldboard plow and three-dimensional computer graphic technique were applied to find out the improved reversible Jaenggi bottom. It was resulted in the newly developed shape of Jaenggi which may be used for improving the performance compared to existing ones.

  • PDF