• Title/Summary/Keyword: B-spline based higher order panel method

Search Result 11, Processing Time 0.024 seconds

Analysis of Steady Flow Around a Two-Dimensional Body Under the Free Surface Using B-Spline Based Higher Order Panel Method (B-Spline 기저 고차경계요소법에 의한 자유수면하의 2차원 물체주위 유동해석)

  • Jae-Moon Lew;Yang-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • A two-dimensional higher order panel method using B-splines has been developed to overcome the disadvantages of the low order panel method and to obtain more accurate solution. The sources and the normal dipoles are distributed on both the body and the free surface. Instead of applying the upwind finite difference schemes to satisfy the linearized free surface and the radiation condition, the derivatives of the basis functions of the B-splines are directly applied to the linearized free surface condition. Numerical damping in the Dawson's method are avoided in the Present computations. In order to validate the present method, numerical computations are carried out for a submerged cylinder and a two-dimensional hydrofoil steadily moving beneath a free surface. The numerical results show that fast convergence and better accuracies have been achieved by the present method.

Unsteady Analysis of 3-Dimensional Hydrofoils Using a B-Spline Based High Order Panel Method

  • Jang, Hyun-Gil;Ahn, Byoung-Kwon;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.16-31
    • /
    • 2008
  • The lifting-surface programs have been used successfully in practice for the design and global performance prediction of the marine propellers. To predict the pressures on the blade for the strength analysis, the constant panel method has been a good alternative. To meet the need for more accurate information on the pressure near the tip region and the trailing edge of the blade, the higher order panel method (HiPan, hereinafter) based on a B-spline is developed and now available. However, there is an increasing demand to get the highly reliable unsteady behavior of the pressure near the tip region by the HiPan. The ultimate goal of our efforts is to develop the fully unsteady higher order panel code for the propeller. In the present paper, we will show the numerical procedure applicable to unsteady problems of the three dimensional hydrofoil in a sinusoidal gust and heave motions.

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

Application of High Order Panel Method for Improvement of Prediction of Marine Propeller Performance (프로펠러 단독성능해석 향상을 위한 고차패널법의 적용)

  • Kim, Gun-Do;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.113-123
    • /
    • 2005
  • A higher order panel method based on B-spline representation for both the geometry and the solution is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then shown to be evaluated using conventional numerical quadrature. By selecting a proper order for numerical quadrature, the accuracy of the present method can be increased to the machine limit. The far- and near-field influences are shown to be evaluated based on the same far-field approximation, but the near-field solution requires subdividing the panels into smaller subpanels continuously, which can be effectively implemented due to the B-spline representation of the geometry. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution on the blade surface, including very close to the tip and trailing edge regions, with far fewer panels than existing low order panel methods.

Wake Roll-up Modeling and Steady Hydrodynamic Analysis of Marine Propellers Using a B-Spline Based Higher-Order Panel Method (B스플라인 고차 패널법을 이용한 프로펠러 후류감김 모델링 및 정상유동해석)

  • Ahn, Byoung-Kwon;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.353-360
    • /
    • 2008
  • A numerical model for the analysis of the marine propeller including wake roll-up is presented. In this study, we apply a higher-order panel method, which is based on a B-spine representation for both generations of the propeller geometry and hydrodynamic solutions, to predict the flow around the propeller blades. The present model is validated by comparison of the experimental measurements. The results show that the present method is able to predict the improved pressure distributions on the blade surface, especially very close to propeller tip regions, where other panel methods without the wake roll-up model give erroneous results.

Numerical Analysis of Tip Vortex Flow of Three-dimensional Hydrofoil using B-Spline Higher-order Boundary Element Method (B-Spline 고차 경계요소법을 이용한 3차원 수중익의 날개 끝 와류유동 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • A three-dimensional higher order boundary element method based on the B-spline is presented. The method accurately models piecewise continuous bodies and induced velocity potentials using B-spline tensor product representations, and it is capable of obtaining accurate pointwise values for the potential and its derivatives, especially in the trailing edge and tip region of the lift generating body, which may be difficult or impossible to evaluate with constant panel methods. In addition, we implement a wake roll-up and examine the tip vortex formation in the near wake region. The results are compared with existing numerical results and the results of experiments performed out at the cavitation tunnel of Chungnam National University.

Numerical Experimentation of a 2-D B-Spline Higher Order Panel Method (2차원 B-스플라인 기저 고차패널법의 수치실험)

  • Chung-Ho Cho;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. Unlike Lee/Kerwin, who placed multiple control points on each panel and solved the overdetermined system of equation by the least square approach, the present method places only as many number of control points as required by the unknowns of the problem. Especially, a null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. The new approach, is validated to be accurate through comparison with the analytic solution for a 2-D airfoil and to be less time-consuming due to fewer number of panels required than that used in Lee/Kerwin.

  • PDF

Analysis of Two-dimensional Hydrofoil Problems Using Higher Order Panel Method based on B-Splines (B-스플라인 고차패널법에 의한 2차원 수중익 문제 해석)

  • Chung-Ho Cho;Gun-Do Kim;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.9-20
    • /
    • 1999
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. The self-influence functions due to the normal dipole and the source are separated into the singular and nonsingular parts, and then the former is integrated analytically whereas the latter is integrated using Gaussian quadrature. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution around lifting foils with much fewer panels than existing low order panel methods.

  • PDF

A B-Spline Higher Order Panel Method for Analysis of Three Dimensional Potential Flow (B-스플라인 고차패널법에 의한 3차원 포텐셜 유동 해석)

  • Gun-Do. Kim;Ui-Sang Hwang;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.57-69
    • /
    • 2000
  • A higher order panel method based on representation for both the geometry and the velocity potential is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then the singular part is integrated analytically whereas the non-singular part is integrated using Gaussian quadrature. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution around lifting bodies with much fewer panels than existing low order panel methods.

  • PDF

Analysis of Linear Springing Responses of a Container Carrier by using Vlasov Beam Model (Vlasov 보 모델을 이용한 컨테이너 선박의 스프링잉 응답해석)

  • Kim, Yoo-Il;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.306-320
    • /
    • 2010
  • Modern ultra-large container carriers can be exposed to the unprecedented springing excitation from ocean waves due to their relatively low torsional rigidity. Large deck opening on the deck of container carriers tends to cause warping distortion of hull structure under wave-induced excitation, eventually leading to the higher chance of resonance vibration between its torsional response and incoming waves. To handle this problem, a higher-order B-spline Rankine panel method and Vlasov-beam FE model was directly coupled in the time domain, and the coupled equation was solved by using an implicit iterative method. In order to capture the complicated behavior of thin-walled open section girder, a sophisticated beam-based finite element model was developed, which takes into account warping distortion and shear-on-wall effect. Then, the developed beam model was directly coupled with the time-domain Rankine panel method for hydrodynamic problem by using the fixed-point iteration method. The developed computational scheme was validated through the comparison with the frequency-domain solution on the container carrier model in linear springing regime.