• Title/Summary/Keyword: B-hydroxybutyrate

Search Result 30, Processing Time 0.024 seconds

Characterization of a Photosynthetic Mutant Selected by Increased Formation of Poly-3-Hydroxybutyrate in Rhodobacter sphaeroides

  • Lee, Il-Han;Kho, Dhong-Hyo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.714-718
    • /
    • 1998
  • Various mutants either lacking or having decreased levels of light-harvesting complexes and reaction center complex were obtained with a high frequency by an increased formation of poly-3-hydroxybutyrate (PHB) in Rhodobacter sphaeroides. One of the photosynthesis-defective mutants, PY-17, which was devoid of any of the light-harvesting complexes (B800-850, B875) as well as the reaction center complex, was analyzed further. The mutant showed substantial transcription of the puhA, pufKBALMX, and pucBAC operons coding for the structural proteins of the photosynthetic complexes although each of the activities was lower than that of the wild type. Translation of the pufKBALMX and pucBAC operons were also active in the mutant although with activities different from the corresponding one of the wild type. From these results the mutation appears to exert its effect at the post-translational level of the photosynthetic complex assembly. Complementation of the photosynthesis-defective phenotype of the mutant was achieved with an about 12-kb DNA region containing the puhA gene. The relationship between the formation of PHB and photosynthetic complexes is discussed.

  • PDF

High Level Production of Supra Molecular Weight Poly(3-Hydroxybutyrate) by Metabolically Engineered Escherichia coli

  • Park, Jong-il;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.196-200
    • /
    • 2004
  • The supra molecular weight poly(〔R〕-3-hydroxybutyrate) (PH B), having a molecular weight greater than 2 million Da, has recently been found to possess improved mechanical properties compared with the normal molecular weight PHB, which has a molecular weight of less than 1 million Da. However, applications for this PHB have been hampered due to the difficulty of its production. Reported here, is the development of a new metabolically engineered Escherichia coli strain and its fermentation for high level production of supra molecular weight PHB. Recombinant E. coli strains, harboring plasm ids of different copy numbers containing the Alcaligenes latus PHB biosynthesis genes, were cultured and the molecular weights of the accumulated PHB were compared. When the recombinant E. coli XL1-Blue, harboring a medium-copy-number pJC2 containing the A. latus PHB biosynthesis genes, was cultivated by fed-batch culture at pH 6.0, supra molecular weight PHB could be produced at up to 89.8 g/L with a productivity of 2.07 g PHB/L-h. The molecular weight of PHB obtained under these conditions was as high as 22 MDa, exceeding by an order of magnitude the molecular weight of PHB typically produced in Ralstonia eutropha or recombinant E. coli.

Production of Poly-3-hydroxybutyrate from Xylose by Bacillus megaterium J-65 (Bacillus megaterium J-65에 의한 xylose로부터 poly-3-hydroxybutyrate 생산)

  • Jun, Hong-Ki;Jin, Young-Hi;Kim, Hae-Nam;Kim, Yun-Tae;Kim, Sam-Woong;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1625-1630
    • /
    • 2008
  • A microorganism capable of producing high level of poly-3-hydoxybutyrate (PHB) from xylose was isolated from soil. The isolated strain J-65 was identified as Bacillus megaterium based on the morphological, biochemical and molecular biological characteristics. The optimum temperature and pH for the growth of B. megaterium J-65 were $37^{\circ}C$ and 8.0, respectively. The optimum medium composition for the cell growth was 2% xylose, 0.25% $(NH_4)_2SO_4$, 0.3% $Na_2HPO_4{\cdot}12H_2O$, and 0.1% $KH_2PO_4$. The optimum condition for PHB accumulation was same to the optimum condition for cell growth. Copolymer of ${\beta}$-hydroxybutyric and ${\beta}$-hydroxyvaleric acid was produced when propionic acid was added to shake flasks containing 20 g/l of xylose. Fermenter culture was carried out to produce the high concentration of PHB. In batch culture, cell mass was 9.82 g/l and PHB content was 35% of dry cell weight. PHB produced by B. megaterium J-65 was identified as homopolymer of 3-hydoxybutyric acid by GC and NMR.

Analysis of Poly(3-Hydroxybutyrate) Granule-Associated Proteome in Recombinant Escherichia coli

  • Han Mee-Jung;Park Si-Jae;Lee Jeong-Wook;Min Byoung-Hoon;Lee Sang-Yup;Kim Soo-Jin;Yoo Jong-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.901-910
    • /
    • 2006
  • Poly(3-hydroxybutyrate) [P(3HB)] is a microbial polyester intracellularly accumulated as distinct granules in numerous microorganisms as an energy and carbon storage material. Recombinant Escherichia coli harboring the heterologous P(3HB) biosynthesis genes accumulates large amounts of P(3HB) granules, yet the granule-associated proteins have not been identified. Therefore, this study reports on an analysis of the P(3HB) granule-associated proteome in recombinant E. coli. Fiye proteins out of 7 spots identified were found to be involved in functions of translation, heat-stress responses, and P(3HB) biosynthesis. Two of the major granule-associated proteins, IbpA/B, which are already known to bind to recombinant proteins forming inclusion bodies in E. coli, were further analyzed. Immunoblotting and immunoelectron microscopic studies with IbpA/B antibodies clearly demonstrated the binding and localization of IbpA/B to P(3HB) granules. IbpA/B seemed to play an important role in recombinant E. coli producing P(3HB) by stabilizing the interface between the hydrophobic P(3HB) granules and the hydrophilic cytoplasm. Thus, IbpA/B were found to act like phasins in recombinant E. coli, as they are the major proteins bound to the P(3HB) granules, affect the morphology of the granules, and reduce the amount of cytosolic proteins bound to the P(3HB) granules.

Improvement of Photoheterotrophic Hydrogen Production of Rhodobacter sphaeroides by Removal of B800-850 Light-Harvesting Complex

  • KIM EUI-JIN;YOO SANG-BAE;KIM MI-SUN;LEE JEONG K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1115-1119
    • /
    • 2005
  • The photoheterotrophic $H_2$ production of Rhodobacter sphaeroides was significantly increased through disruption of the genes coding for uptake hydrogenase and poly-${\beta}$-hydroxybutyrate (PHB) synthase (Lee et al., Appl. Microbiol. Biotechnol. 60: 147-153, 2002). In this work, we further removed the B800-850 light-harvesting (LH) complex from the strain and found an increase in $H_2$ production at the light-saturating cell growth (${\ge}10$ Watts $[W]/m^2$). Neither the mutant nor the wild-type produced more $H_2$ at the brighter light. Accordingly, light does not appear to be limited for the $H_2$ production by the presence of B800-850. However, increase in the level of the spectral complexes resulted in decrease of $H_2$ production. Thus, although the B875 is essential for light harvesting, the consumption of cellular energy for the synthesis of B800-850 and the surplus LH complexes may reduce the energy flow into the $H_2$ production of R. sphaeroides.

Effect of Dietary Antioxidant and Energy Density on Performance and Anti-oxidative Status of Transition Cows

  • Wang, Y.M.;Wang, J.H.;Wang, C.;Wang, J.K.;Chen, B.;Liu, J.X.;Cao, H.;Guo, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1299-1307
    • /
    • 2010
  • This study was conducted to evaluate the effect of dietary antioxidant and energy density on performance and antioxidative status in transition cows. Forty cows were randomly allocated to 4 dietary treatments in a $2{\times}2$ factorial design. High or low energy density diets (1.43 or 1.28 Mcal $NE_L$/kg DM, respectively) were formulated with or without antioxidant (AOX, a dry granular blend of ethoxyquin and tertiary-butylhydroquinone; 0 or 5 g/cow per d). These diets were fed to cows for 21 days pre-partum. During the post-partum period, all cows were fed the same lactation diets, and AOX treatment followed as for the pre-partum period. Feeding a high energy diet depressed the DMI, milk yield, and 4% fat-corrected milk (FCM) of cows. However, AOX inclusion in the diet improved the milk and 4% FCM yields. There was an interaction of energy density by AOX on milk protein, milk fat and total solids contents. Feeding a high energy diet pre-partum increased plasma glucose and ${\beta}$-hydroxybutyrate, whereas dietary AOX decreased plasma ${\beta}$-hydroxybutyrate value during the transition period. There were also interactions between time and treatment for plasma glutathione peroxidase activity and malondialdehyde content during the study. Cows fed high energy diets pre-partum had higher plasma glutathione peroxidase activity 3 days prior to parturition, compared with those on low energy diets. Inclusion of AOX in diets decreased plasma glutathione peroxidase activity in cows 3 and 10 days pre-partum. Addition of AOX significantly decreased malondialdehyde values at calving. Energy density induced marginal changes in fatty acid composition in the erythrocyte membrane 3 days post-partum, while AOX only significantly increased cis-9, trans-11 conjugated linoleic acid composition. The increase in fluidity of the erythrocyte membrane was only observed in the high energy treatment. It is suggested that a diet containing high energy density pre-partum may negatively affect the anti-oxidative status, DMI and subsequent performance. Addition of AOX may improve the anti-oxidative status and reduce plasma ${\beta}$-hydroxybutyrate, eventually resulting in improved lactation performance; the response to AOX addition was more pronounced on the high energy diet.

Effects of Neutral Detergent Fiber from Rice Straw on Blood Metabolites and Productivity of Dairy Cows in the Tropics

  • Kanjanapruthipong, Jeerachai;Thaboot, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.356-362
    • /
    • 2006
  • This study aimed to assess the effects of neutral detergent fiber (NDF) from rice straw on blood metabolites and productivity of dairy cows in the tropics. Eight Holstein ${\times}$ indigenous (75-87.5% Holstein) were randomly allocated to dietary treatments according to a double $4{\times}4$ Latin square design. Contents of roughage NDF from rice straw were 12.8, 14.8, 16.8 and 18.8% dry matter (DM) and concentrate NDF content was 10.2% DM, so that levels of dietary NDF were 23, 25, 27 and 29% DM. Dietary treatments were isonitrogenous and isocaloric diets. The average maximum and minimum temperature humidity index during the experimental period were 85.6 and 76.9, respectively. Plasma glucose (p<0.05), dry matter intake and 4% fat corrected milk (p<0.01) decreased with increasing contents of roughage NDF from rice straw, while rectal temperature, serum urea, cortisol, low density lipoprotein-cholesterol (p<0.05), serum total protein and ${\beta}$-hydroxybutyrate (p<0.01) increased. Serum triglyceride, total cholesterol and high density lipoprotein-cholesterol were not affected (p>0.05). Decreased rectal temperature and concentrations of serum cortisol were associated with decreasing levels of ${\beta}$-hydroxybutyrate and serum urea, but with increased concentrations of plasma glucose, DMI and 4% fat corrected milk indicating that lactating cows fed lower fiber diets were in lower oxidative stress. Therefore higher intake and metabolic efficiency in dairy cows fed diets lower in roughage NDF from rice straw would be of an advantage in productive systems under tropical conditions.

Effects of Exogenous Bovine Somatotropin on Mammary Function of Late Lactating Crossbred Holstein Cows

  • Tanwattana, P.;Chanpongsang, S.;Chaiyabutr, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 2003
  • The objective of the present study was to determine the effect of exogenous bovine somatotropin on the mammary function in late lactating crossbred Holstein cows. Twelve 87.5% late lactating Holstein cows, approximately 30 weeks postpartum, were divided into two groups of 6 animals each. Animals in the control group were given sodium bicarbonate buffer by subcutaneous injection, while animals in the treated group were given recombinant bovine somatotropin (bST) by subcutaneous injection with 500 mg of bST (14 day prolonged-release bST). After bST injection, milk yield significantly increased from the control level on day 8 to day 20 (p<0.05) with a concomitant increase in mammary blood flow (p<0.01). An increase in mammary blood flow in response to bST treatment was greater than an increase in milk production. An increased plasma concentration of IGF-I coincided with an increase in mammary blood flow in animals treated with bST. There were no significant changes in the concentration of arterial plasma glucose concentration, the arteriovenous concentration difference (A-V difference) and mammary extraction ratio while the mammary glucose uptake increased when compared to the control group. The concentration of arterial plasma triglyceride decreased throughout the experimental period in animals give bST. The plasma concentration of acetate, and the mammary uptake for acetate significantly increased (p<0.05) after bST treatment. The action of bST did not affect the plasma concentration, A-V difference and extraction ratio across the mammary gland for $\beta$-hydroxybutyrate. The concentrations of milk fat and lactose tended to increase during bST treatment. Milk protein concentration initially increased in the first few days and decreased after bST injection when compared to the pretreated period. The present results indicated that bST could affect the mammary function in late lactating cows by increase in milk yield involving changes in both extra-mammary and intra-mammary mechanisms. The exogenous bST exerted its galactopoietic action through an increase in circulating IGF-I of the late lactating Crossbred Holstein cattle.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Expression Analysis of ${\beta}$-Ketothiolase and Acetoacetyl-CoA Reductase of Rhodobacter sphaeroides

  • KHO, DHONG HYO;CHEOL YUN JEONG;JEONG JUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1031-1037
    • /
    • 2001
  • By a sequential action of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, two molecules of acetyl-CoA re converted into D-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyrate (PHB) of rhodobacter sphaeroides. The ${\beta}$-ketothiolase gene, phbA, and acetoacetyl-CoA reductase gene, phbB, were cloned and analyzed for their expression. Enzyme activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase showed constitutive levels during aerobic and photoheterotrophic growth of R. sphaeroides. In addition, no difference of each enzyme activity was observed between cells grown aerobically and photoheterotrophically. The constitutive level of the enzyme activities are regulated according to the growth phases along with growth conditions. Thus, phbAB expression is not determinative in regulating the PB content. On the other hand, phbA-deleted cell AZI accumulated only $10\%$ PHB of the wild-type, and an elevated dosage of phbAB in trans in R. sphaeroides resulted in a higher content of PHB, indicating that phbAB codes for the enzymes responsible for providing the main supply of subsyrate for PHB synthase. PHB formation by an alternative pathway that does not does not depend on the phbA-and phbB-coding enzymes is also proposed.

  • PDF