• Title/Summary/Keyword: B-beam

Search Result 1,389, Processing Time 0.024 seconds

Development of the ice resistance series chart for icebreaking ships

  • Lee, Chun-Ju;Joung, Tae-Hwan;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.794-802
    • /
    • 2018
  • The ice resistance series charts for icebreaking ships were developed through a series of systematic model tests in the ice tank of the Korean Research Institute of Ship and Ocean Engineering (KRISO). Spencer's (1992) component-based scaling system for ship-ice model tests was applied to extend the model ship correlations. Beam to draft ratio (B/T), length to beam ratio (L/B), block coefficient ($C_B$) and stem angle (${\alpha}$) were selected as geometric parameters for hull form development. The basic hull form (S1) of twin pod type with B/T of 3.0, L/B of 6.0, $C_B$ of 0.75 and stem angle of $25^{\circ}$ was generated with a modern hull design concept. A total of 13 hulls were designed varying the geometric parameters; B/T of 2.5 and 3.5, L/B of 5.0 and 7.0, $C_B$ from 0.65 to 0.85 in intervals of 0.05, and 5 stem angles from $15^{\circ}$ to $35^{\circ}$. Ice resistance tests were first carried out with the basic hull form in level ice with suitable speed. Four more tests for $C_B$ variations from 0.65 to 0.85 were conducted and two more for beam to draft and length to beam ratios were also performed to study the effect of the geometric parameters on ice resistance. Ice resistance tests were summarized using the volumetric coefficient, $C_V$ ($={\nabla}/L^3$), instead of L/B and $C_B$ variations. Additional model tests were also carried out to account for the effect of the stem angle, ice thickness and ice strength on ice resistance. In order to develop the ice resistance series charts with a minimum number of experiments, the trends of the ice resistance obtained from the experiments were assumed to be similar for other model ship with different geometric parameters. A total of 18 sheets composed of combinations of three different beam to draft ratios and six block coefficients were developed as a parameter of $C_V$ in the low speed regions. Three correction charts were also developed for stem angles, ice thickness and ice strength respectively. The charts were applied to estimate ice resistance for existing icebreaking ships including ARAON, and the results were satisfactory with reasonable accuracy.

Small ESPAR Antenna with 180 Degree Azimuth Beam Coverage (180도 방위 빔 커버리지 특성을 갖는 UNII대역 소형 전자 빔 조향 기생 배열 안테나)

  • Choi, Ik-Guen;Ju, Sang-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2010
  • In this papar, we have proposed a small electronically steerable parasitic array radiator with 180 degree azimuth beam coverage and high gain characteristics. The proposed antenna is composed of a uniplanar Yagi dipole as a feeding element and two dipoles as parasitic elements. The fabricated antenna is tested by electronically changing the reactance loaded on the parasitic dipoles and the results show that it has 5.2dB~6.7dB gain in $-90^{\circ}{\sim}90^{\circ}$wide azimuth range and -10dB return loss characteristics within 5.725GHz~5.825GHz UNII band.

Electron Temperature, Plasma Density and Luminous Efficiency in accordance with Discharge Time in coplanar AC PDPs

  • Jeong, S.H.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Park, W.B.;Lee, J.H.;Lim, J.E.;Lee, H.J.;Han, Y.G.;Son, C.G.;Lee, S.B.;Yoo, N.L.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1203-1206
    • /
    • 2005
  • Electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDP's) have been experimentally investigated in accordance with discharge time by a micro-probe in this experiment. The resolution of a step mortor to move in micro-Langmuir probe is 10um.[1-3] The used gas in this experiment is He-Ne-Xe (4%) mixure gas. And sustain voltage is 320V which is above of firing voltage for degradation. The electron temperature and plasma density can be obtained from current-voltage (I-V) characteristics of micro Langmuir probe, in which negative to positive bias voltage was applied to the probe. And Efficiency is calculated by formula related discharge power and light emission. Those experiments operated as various discharge time ($0{\sim}72$ Hours). As a result of this experiment, Electron Temperature was increased from 2eV to 5eV after discharge running time of 20 hours and saturates beyond 20 hours. The plasma density is inversely proportional to the square root of electron temperature. So the plasma density was decreased from $1.8{\times}10^{12}cm^{-3}$ to $8{\times}10^{11}cm^{-3}$ at above discharge running time. And the Efficiency was reduced to 70% at 60hours of discharge running time.

  • PDF

Development of Stress Evaluation Equation of Circular Column-Box Beam Connections (원형기둥-상자형보 접합부의 응력평가식 개발)

  • 이주혁;김정환;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.110-115
    • /
    • 2005
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25m plano-convex lens having 2.5mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an optical tweezers type and pure gradient force type. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. Using the optical tweezers type, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about $16\%,\;11.4\%\;and\;9.6\%$ for PSL particle size of $2.5{\mu}m,\;1.0{\mu}m,\;and\;0.5{\mu}m$, respectively. Particle beam width was minimized around the laser power of 0.2W. However, as increasing the laser power higher than 0.4W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. For pure gradient force type, the reduction of the particle beam width was smaller than optical tweezers type but proportional to laser power. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively.

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF