• Title/Summary/Keyword: B-SiC

Search Result 1,312, Processing Time 0.043 seconds

Study on Synthesis and Mechanical Properties of (B.Si)C Composite by Self Propagating High Temperature Synthesis Chemical Furnace (SHS 화학로에 의한 (B.Si)C 복합체의 합성 및 기계적 특성에 관한 연구)

  • 이형복;조덕호;이재원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.413-418
    • /
    • 1995
  • The (B.Si)C composite was prepared form the mixture of metal boron, silicon, and carbon powders in Ar atmosphere by Self-propagating High-temperature Synthesis Chemical Furnace. The characterization of synthesized power and sintered body were investigated. The microstructure of sintered body suggested that SiC boundary was made between B4C grains. The most excellent mechanical properties, the relative density of 95% oftheoretical value, 3 point flexural strength of 360MPa, and fracture toughness of 3.6MN/m3/2 could be obtained in 80wt% B4C-20 wt% SiC composite were obtained.

  • PDF

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites (SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響))

  • Shin, Yong-Deok;Seo, Je-Ho;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Electrical Resistivity and Fracture Toughness of SiC-ZrB2

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.400-403
    • /
    • 1999
  • The mechanical and electrical properties of hot-pressed and annelaed $\beta$-SiC+39vol.% $ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$(6:4 wt%). In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$ grains were observed between $\beta$-SiC and $ZrB_2$. The properties of the $\beta$-SiC+39vol.%$ZrB_2$ composites with 4wt% $Al_2O_3+Y_2O_3$ at R.T. are as follows: fracture toughness is 6.37 MPa.m1/2, electical resistivity is $1.51\times10^{-4}\Omega \cdot\textrm{cm}$ and the relative density is 98.6% of the theoretical density. The fracture toughness of the $\beta$-SiC+39 vol.% $ZrB_2$ composites were weakly decreased with increasing amount of $Al_2O_3+Y_2O_3$ additives. Internal stresses due to the difference of $\beta$-SiC and $ZrB_2$ thermal expansion coefficient and elastic modulus mismatch appeared to contribute to fracture toughening in $\beta$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites.

  • PDF

Wear and wear transition mechanism in SiC and SiC-TiB$_{2}$ Composites during sliding (SiC 및 SiC-TiB$_{2}$복합재료에서 미끄럼시의 마모 및 마모천이기구)

  • 조성재;엄창도;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.11-17
    • /
    • 1995
  • 본 연구에서는 SiC 및 SiC-TiB$_{2}$복합재료의 마모 및 마모천이기구를 비교 실험한 결과 다음과 같은 결론을 얻었다. 두 재료의 마모천이현상은 각각의 하중이 200N(SiC)과 80N(SiC-TiB$_{2}$)이상에서 나타나게 되었다. 마모기구는 임계미끄럼시간에서 두 단계로 나뉘어진다. 소성변형에 의한 grooving과정과 잔류응력에 의한 grain pull-out과정들로써 미세 구조를 통해 관찰할 수 있었다. grain pull-out과정은 초기단계에서 부터 생성된 전위가 축적되어 잔류응력을 발생시키므로 일어난 과정이다. SiC에 TiB$_{2}$를 첨가하므로 마모는 더욱 심하게 일어나게 되었다. 입계의 강도를 더 약하게 하였기 때문이다. 그러나, 파괴인성은 입계강도가 약할수록 증가하였다. 결국 파괴인성이 큰 재료가 마모는 더 심하게 일어남으로 서로 상반된 관계를 갖고 있슴을 결론지을 수 있었다.

  • PDF

Effect of Annealing on Properties of SiC-$TiB_2$ Composites (SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

Properties of SiC Electrocondutive Ceramic Composites according to Transition Metal (천이금속 영향에 따른 SiC계 도전성 세라믹 복합체의 특성)

  • Shin, Yong-Deok;Oh, Sang-Soo;Jeon, Jae-Duck;Park, Young;Yim, Seung-Hyuk;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1588-1590
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% $TiB_2$ and using 61vol.% SiC 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at 1800$^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), $TiB_2$ and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-$TiB_2$, and SiC(2H), WC and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-WC composites. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was ocurred on the SiC-$TiB_2$, but ${\alpha}{\rightarrow}{\beta}$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the flexural strength showed respectively value of 96.2%, 310.19Mpa in SiC-WC composites. The electrical resistivity of the SiC-$TiB_2$ and the SiC-WC composites is all positive temperature cofficient resistance(PTCR) in the temperature ranges from 25$^{\circ}C$ to 500$^{\circ}C$.

  • PDF

방전플라즈마 소결에 의한 SiC-$ZrB_2$ 복합체 개발

  • Kim, Cheol-Ho;Sin, Yong-Deok;Ju, Jin-Yeong;Lee, Jeong-Hun;Lee, Hui-Seung;Kim, Jae-Jin;Lee, Jong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.87-87
    • /
    • 2009
  • The composites were fabricated by adding 30, 40, 50, 60[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. SiC-$ZrB_2$ composites were sintered by Spark Plasma Sintering(hereafter, SPS) in argon gas atmosphere. The relative density SiC+30[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$, SiC+50[vol.%]$ZrB_2$ and SiC+60[vol.%]$ZrB_2$ composites are 94.98[%], 99.57[%], 96.58[%] and 93.62[%] respectively.

  • PDF

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.