• Title/Summary/Keyword: B subunit

Search Result 452, Processing Time 0.031 seconds

Isolation of Escherichia coli O157:H7 from animal feces and biochemical characteristics of Verotoxin-2 produced by these strains II. Purification and characterization of Verotoxin-2 Produced by Escherichia coli O157:H7 Isolated from animal feces (동물분변에서 Escherichia coli O157:H7의 분리 및 이들 균이 생산하는 Verotoxin-2의 생물화학적 특성 II. 동물분변에서 분리한 Escherichia coli O157:H7으로부터 Verotoxin-2의 정제 및 특성)

  • Cha, In-ho;Kim, Yong-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.379-387
    • /
    • 1996
  • The objects of the present study were to establish the method of purification, subunit dissociation of verotoxin-2 (VT2) produced by Escherichia coli O157:H7, and to investigate the characteristics of purified verotoxin-2 such as molecular weight and composition of amino acid. The results were summerized as follows; Verotoxin-2 was extracted by addition of polymyxin B sulfate into bacterial cell lysate prepared from Escherichia coli O157:H7(KSC109). As an initial step, the bacterial cell lysate was precipitated with 30% saturated ammonium sulfate. The precipitated crude toxin was then subjected to anion-exchange, chromatofocusing and cation-exchange chromatography. Using this scheme, we obtained highly purified toxin with a specific activity of $1.1{\times}10^9$ $CD_{50}/mg$. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) for purified VT2 showed two protein bands. The upper band, approximately 32 Kd, was supposed as A subunit and the lower band, approximately 7.7 Kd, was supposed as B subunit. When the toxin was separated in the subunit-dissociating solution, two peaks emerged with retention times of 15 and 28 min by HPLC. These peaks represented A subunit and B subunit, respectively. The amino acid composition of purified VT2 were made up in order of glutamic acid, histamine, asparaginic acid, histidine, lysine, alanine and leucine etc. The largest amount among the amino acid composing VT2 was methionine.

  • PDF

Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Protein phosphatase 2A (PP2A), a family of serine/threonine protein phosphatases, plays an important role in balancing the phosphorylation status of cellular proteins for regulating diverse biological functions in eukaryotic organisms. Despite intensive studies in mammals, limited information on its role is available in filamentous fungi. Here, we investigated the functional roles of genes for a putative B' delta regulatory subunit (FgPP2AR) and a catalytic subunit (FgPP2AC) of PP2A in a filamentous ascomycete, Fusarium graminearum. Molecular characterization of an insertional mutant of this plant pathogenic fungus allowed us to identify the roles of FgPP2AR. Targeted gene replacement and complementation analyses demonstrated that the deletion of FgPP2AR, which was constitutively expressed in all growth stages, caused drastic changes in hyphal growth, conidia morphology/germination, gene expression for mycotoxin production, sexual development and pathogenicity. In particular, overproduction of aberrant cylindrical-shaped conidia is suggestive of arthroconidial induction in the ${\Delta}FgPP2AR$ strain, which has never been described in F. graminearum. In contrast, the ${\Delta}FgPP2AC$ strain was not significantly different from its wild-type progenitor in conidiation, trichothecene gene expression, and pathogenicity; however, it showed reduced hyphal growth and no perithecial formation. The double-deletion ${\Delta}FgPP2AR;{\Delta}FgPP2AC$ strain had more severe defects than single-deletion strains in all examined phenotypes. Taken together, our results indicate that both the putative regulatory and catalytic subunits of PP2A are involved in various cellular processes for fungal development in F. graminearum.

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

Cloning of pdh Genes Encoding Subunits of Pyruvate Dehydrogenase Complex from Lactobacillus reuteri ATCC 55739

  • Nam, Su-Jin;Park, Jae-Yong;Kim, Jung-Kon;Ha, Yeong-Lae;Yun, Han-Dae;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.197-201
    • /
    • 2004
  • A 2-D gel protein analysis of Lactobacillus reuteri ATCC 55739 produced spots corresponding to subunits of the pyruvate dehydrogenase complex, as identified by N-terminal protein sequencing. Oligonucleotide probes specific for the subunits of the pyruvate dehydrogenase complex were synthesized ,md used to screen a L. reuteri genomic library to clone the structural genes. Two positive clones were isolated and identified as having the same 2.2 kb insert. A pdhB encoding the $\beta$-subunit of El subunit (pyruvate dehydrogenase component) of the pyruvate dehydrogenase complex was located in the middle of the insert. Furthermore, a 5' truncated pdhA encoding the $\alpha$-subunit of the E1 subunit and a 3' truncated pdhC encoding the E2 subunit (dihydrolipoamide acetyltransferase) were also located upstream and downstream of the pdhB, respectively.

Identification of Calcium/Calmodulin-Dependent Phosphatase as the Dephosphorylating Enzyme of IgE-Dependent Histamine-Releasing Factor in RBL-2H3 (RBL-2H3 세포에서 IgE-depnedent Histamine-releasing Factor의 탈인산화 효소에 관한 연구)

  • Hwang Sun-Ok;Lee Kyunglim
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.189-193
    • /
    • 2005
  • IgE-dependent histamine-releasing factor(HRF) was initially described as a secretagogue for secretion of histamine from IgE+ basophils from a subset of allergic donors. Previously, we identified that S98 residue of HRF was phosphorylated using anti-HRFpS98 antibody which specifically recognizes the phosphorylated serine residue of HRF and HRFS98A mutant construct. In vitro kinase assay, only wild type HRF was phosphorylated by PKC, and S98A HRF was not affected by PKC. In this study, we attempted to characterize the phosphatase which specifically dephosphorylates HRF by immunoprecipitation and pull-down assay. In RBL-2H3 cells, HRF interacted only with calcineurin (also called as PP2B, calcium/calmodulin-dependent phosphatase) but not with PP1 or PP2A. The results suggest that HRF is most likely dephosphory-lated by calcineurin.

Identification and sequence analysis of small subunit ribosomal RNA gene of bovine Theileria isolates from Korea and Japan (한국과 일본 소에 감염된 Theileria 분리주의 small subunit ribosomal 유전자의 동정 및 분석)

  • Chae, Joon-seok;Park, Jin-ho;Kwon, Oh-deog;Waghela, Suryakant D.;Holman, Patricia J.;Wagner, Gerald G.;Lee, Joo-mook
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.909-917
    • /
    • 1998
  • Six different sequences types(A through E and H) and a subtype(Bl) of the small subunit ribosomal RNA(SSUrRNA) gene were found in bovine Theileria isolates from different areas of Korea and Japan. The sequences were aligned and three hypervariable regions were observed in the nucleotide position ranges 212~231, 261~270 and 632~690. Five of the Theileria isolates yielded sequence type A; these were the field isolates KCB, KCN, and KCJ, and the laboratory stock KLS, all from Korea, and a single isolate from Japan (JHS). This sequence type is identical to the SSUrRNA gene sequence listed for Theileria buffeli (GenBank Accession No. Z15106) from Marula, Kenya. The Korean field isolate KKB yielded only a single sequence type (B), but multiple sequence types were found in some isolates. For example, KCB and JHS isolates yielded both types A and B ; isolate KKW showed types B and H; isolate KCN showed types A, C, and D ; and isolate KCJ showed types A, B, E, and a subtype B1. Finding of the multiple sequences SSUrRNA gene sequences suggests that bovine Theileria isolates from both Korea and Japan may consist of mixed populations.

  • PDF

Identification of Soybean Glycinin Precursor In Vitro (대두 세포내에서 Glycinin 전구체의 존재 확인)

  • 김정호
    • Journal of Plant Biology
    • /
    • v.32 no.1
    • /
    • pp.51-65
    • /
    • 1989
  • Glycinin is the major storage protein in soybean. It has been known that a molecule of glycinin is composed of 6 subunits, each of which consists of two different kinds of polypeptides, acidic (A) and basic (B) one (NW 39K and 19K, respectively). To study the molecular origin and the relationship of glycinin subunit polypeptides, antibodies against A-and B-polypeptide were obtained by immunizing rabbits with either of the antigens purified by gel filtration and preparative electrophoresis. Each antibody was not only specific for its own antigen polypeptide in soybeans but also recoginzed the precursor which was synthesized in vivo and in vitro. The polyadenylated mRNAs were isolated from immature seeds and leaves and were translated in vitro using wheat germ extract. One of the seed-specific translation products. MW 60K, was identified to be the precursor of glycinin subunit by immunoprecipitation with antibodies against glycinin A- and B-polypeptide. Mature A- and B-polypeptides were not detected in the translte in vitro. These results suggest that the precursor polypeptide is synthesized from the mRNA and is cleaved to yield A- and B-polypeptides which from a glycinin subunit in the cell. Glycinin genes were expressed with the maturation of soybean seeds in a tissue-specific and developmental stage-specific manner.

  • PDF

Metabolic Adjustment of Lactate Dehydrogenase Isozymes to a Change in Dissolved Oxygen in Bluegill (Lepomis macrochirus) (파랑볼우럭(Lepomis macrochirus)에서 용존산소량의 변화에 대한 젖산탈수소효소 동위효소들의 대사조절)

  • Ku, Bora;Cho, Sung Kyu;Yum, Jung Joo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1066-1071
    • /
    • 2021
  • The aim of this study was to examine the metabolic adjustment of lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes to a change in dissolved oxygen (DO) in bluegill (Lepomis macrochirus). After bluegills were adapted to a constant environment in an aquarium, the DO was changed to investigate the activity of LDH isozyme and the relative ratio of subunits A, B, and C for each tissue. When the DO was decreased from 18 ppm to 6 ppm, LDH in skeletal muscle, heart, and brain tissues recovered to the level of control activity within 12, 12, and 6 hr, respectively. LDH activity changed in accordance with a change in DO. The compensation was performed rapidly and is thought to be an important function of LDH in enabling bluegills to adapt to their environment. In bluegill heart, eye, and brain tissues, the relative ratio of subunit A increased and showed a tendency to recover similarly to the subunit ratio of control groups up to 12 hr. It is thought that the anaerobic metabolism using subunit A was increased in the initial stage when DO was changed. In addition, the results revealed that subunit C was more similar to subunit A than subunit B. In bluegills, subunits A and C of LDH seem to be evolutionarily similar. LDH isozymes, mainly containing subunits A and C, are likely responsible for the function of pyruvate reductase, which plays a role in making the bluegill adapt to a hypoxic environment through anaerobic metabolism.

Identification of a Potential Tyrosine Phosphorylation Site on the NR2B Subunit of the N-methyl-D-aspartate Receptor (NMDA 수용체 아단위 2B의 Tyrosine 인산화 위치의 동정)

  • Il Soo Moon;Yong Wook Jung;Bok Hyun Ko
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.654-659
    • /
    • 1998
  • The 2B subunit of N-methyl-D-aspartate (NMDA) receptors (NR2B) is the major phosphotyrosine-containing pro-tein in the postsynaptic density (PSD). In order to identify the site for tyrosine phosphorylation on NR2B, a mass spectrometry was applied on tryptic and endolys-C peptides. The NR2B subunit was isolated from N-octyl glucoside (NOG)-insoluble PSD fraction through SDS-PAGE and electroelution. The eluted protein was confirmed to be NR2B and phosphorylated on tyrosine by its cognate antibody and phosphotyrosine-specific antibody. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of the peptides generated by digesting the eluted NR2B with trysin or endolys-C, a potential site for tyrosine phosphorylation could be identified as Tyr-1304.

  • PDF