• Title/Summary/Keyword: B powder

Search Result 2,477, Processing Time 0.029 seconds

Fabrication of Sintered Compact of Fe-TiB2 Composites by Pressureless Sintering of (FeB+TiH2) Powder Mixture

  • Huynh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.282-286
    • /
    • 2016
  • A sintered body of $TiB_2$-reinforced iron matrix composite ($Fe-TiB_2$) is fabricated by pressureless-sintering of a mixture of titanium hydride ($TiH_2$) and iron boride (FeB) powders. The powder mixture is prepared in a planetary ball-mill at 700 rpm for 3 h and then pressurelessly sintered at 1300, 1350 and $1400^{\circ}C$ for 0-2 h. The optimal sintering temperature for high densities (above 95% relative density) is between 1350 and $1400^{\circ}C$, where the holding time can be varied from 0.25 to 2 h. A maximum relative density of 96.0% is obtained from the ($FeB+TiH_2$) powder compacts sintered at $1400^{\circ}C$ for 2 h. Sintered compacts have two main phases of Fe and $TiB_2$ along with traces of TiB, which seems to be formed through the reaction of TiB2 formed at lower temperatures during the heating stage with the excess Ti that is intentionally added to complete the reaction for $TiB_2$ formation. Nearly fully densified sintered compacts show a homogeneous microstructure composed of fine $TiB_2$ particulates with submicron sizes and an Fe-matrix. A maximum hardness of 71.2 HRC is obtained from the specimen sintered at $1400^{\circ}C$ for 0.5 h, which is nearly equivalent to the HRC of conventional WC-Co hardmetals containing 20 wt% Co.

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

A Study on the Standardization of Kimchi for the Children -The Proper Red Pepper Powder for Children대s Kimchi- (어린이 김치 표준화에 대한 연구 -어린이 김치에 적합한 고추가루-)

  • 송영옥;빈성미;문정원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.893-898
    • /
    • 1996
  • This study is a continuous work for the standardization of children's kimchi preparation. In order to find out the proper red pepper powder for children's kimchi, four kinds of red pepper powder(A, B, C, D) sold in Kyungsang province were used as samples. The proximate composition, color value, capsaicinoids concentration and sugar content in four kinds of the red pepper powder were determined, and sensory evaluation of kimchi Prepared with those was carried out for different fermentation times. Moisture contents of red pepper powder A, B, C and D were in the range of 11.59~13.48%. Lipid and ash contents of samples were in the range of 7.59~8.39% and 4.34~7.45%, respectively. In comparision of color values measured by a Hunter colorimeter, red pepper powder A showed the highest value for a and b values. Also A showed the brightest color as measured in ASTA color and L value. Capsaicin concentration of D and dihydrocapsaicin concentration of C were found to be the highest among the sanlples. The capsaicin equivalent was in tile order of D>C>A>B. The content of total sugar was in the order of B>A>D>C. In the sensory evaluation of children's kimchi prepared with four kinds of red pepper powder, the color and total acceptability of kimchi prepared with A were found to be the best. The results of sensory evaluation between kimchi prepared with A and school supplied kimchi showed that the former was better. And the composition of A red pepper powder was as follows: capsaicin equivalent 24.l5mg%, total sugar content 15.79% and ASTA color value 178.2.

  • PDF

Inhibitory Effect of Aflatoxin $B_1$ Mediated Mutagenicity by Red Pepper Powder in the Salmonella Assay System. (Salmonella assay system에서 고춧가루에 의한 Alfatoxin $B_1$의 돌연변이유발 저해효과)

  • 박건영;김소희;서명자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.156-161
    • /
    • 1991
  • The mutagenic, comutagenic and antimutagenic effects of red pepper powder were studied by using Ames mutagenicity test. extracts(3 fractions) of the red pepper powder did not show any mutagenicity with or without S9 mix in Salmonella typhimurium strains of TA100 and TA98. These extracts did not show any comutagenicity on N-methyl-N'-nitro-N-nitrosoguanidine(MNNG). Capsaicin also did not exhibit any mutagenicity in the absence or presence of S9 mix prepared from rat or hamster livers. However, the red pepper powder showed antimutagenicity aganist aflatoxin $B_1(AFB_1)$ mediatdd mutagenicity. Especially first fraction of the pepper powder inhibited strongly the mutagenicity of $AFB_1$. There was no difference of these activities between hotter tasted pepper powder and plain hot tasted pepper powder.

  • PDF

Selective Laser Sintering of Alumina Using an Inorganic Binder Monoclinic $HBO_2$ and Post-Processing

  • 이인섭
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 1998
  • A new low melting inorganic binder, monoclinic $HBO_2$, has been developed for Selective Laser Sintering (SLS) of alumina powder by dehydration process of boron oxide powder in a vacuum oven at $120^{\circ}C$. It led to better green SLS parts and higher bend strength far green and fired parts compared to other inorganic binders such as aluminum and ammmonium phosphate. This appeared to be due to its low viscosity and better wettability of the alumina particle surface. A low density single phase ceramic, aluminum borate ($Al_{18}B_4O_{33}$), and multiphase ceramic composites, $A_{12}O_3-A_{14}B_2O_9$, were successfully developed by laser processing of alumina-monoclinic $HBO_2$ powder blends followed by post-thermal processing; both $Al_{18}B_4O_{33}$ and $A_{14}B_2O_9$ have whisker-like grains. The physical and mechanical properties of these SLS-processed ceramic parts were correlated to the materials and processing parameters. Further densification of the $A_{12}O_3-A_{14}B_2O_9$ ceramic composites was carried out by infiltration of colloidal silica, and chromic acid into these porous SLS parts followed by heat-treatment at high temperature ($1600^{\circ}C$). The densities obtained after infiltration and subsequent firing were between 75 and 80% of the theoretical densities. The bend strengths are between 15 and 33 MPa.

  • PDF

Effect of Graphite Powder Addition on the Mechanical Properties of Carbon/Carbon Composites (흑연분말의 첨가가 탄소/탄소 복합재료의 물성에 미치는 영향)

  • 신준혁;황성덕;강태진
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.72-80
    • /
    • 2000
  • Effect of graphite powder addition on the mechanical properties of carbon fiber reinforced carbon composites (C/C composites) was investigated. Greenbody (G/B) with 0~30wt.% graphite powder addition to phenol resin was prepared and carbonized at $1000^{\circ}C$ to make C/C composites. Flexural strengths of 20wt.% graphite powder additions showed maximum values in the both case of G/B and C/C composites. But, at the graphite addition over 20wt.%, there was negative effect due to the matrix inhomogeneity. Flexural strength of cured resin without graphite Powder was higher than that with graphite. However, flexural strength of carbonized resin with graphite increased three times as much as that of carbonized resin without graphite. Because the addition of graphite powder effects the restraint of shrinkage after carbonization and the deflection of crack path. In Mode II ENF test, energy release rates($G_{II}$) of G/B and C/C composites with the 20w1.% addition of graphite were both increased. But, the addition of graphite was more effective to the increase of $G_{II}$ in C/C composites than that in G/B.

  • PDF

Influence of $Dy_2O_3$ and Sn on the Structure and Magnetic Properties of NdFeNB Magnets

  • Li, Liya;Yi, Jianhong;Peng, Yuan Dong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1171-1172
    • /
    • 2006
  • Addition of 2.0wt%$Dy_2O_3$ or 0.3wt%Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. $Dy_2O_3$ additions result in the increase in the Hci and temperature dependence due to formation of (NdDy)-rich phase and grain refinement of $\Phi$ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with $Dy_2O_3$ and Sn combined addition were found to be considerably improved.

  • PDF

Sintering Behavior of Ball Milled ${MoSi}_{2}$ Powders (볼밀링한 ${MoSi}_{2}$ 분말의 소결거동)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.167-173
    • /
    • 1996
  • The effect of ball milling on the pressureless sintering of MoSi$_2$ was investigated. Ball milling was conducted at 70 rpm for 72 hours using different balls and vessels: one used tungsten carbide balls in a plastic vessel(referred as B-powder) and the other stainless steel ball in a stainless steel vessel(referred as C- powder). The powder was compacted with 173MPa and subsequently sintered at the temperature range of 1150 $^{\circ}C$ and 1450 $^{\circ}C$ in H$_2$, atmosphere. Sintered density was measured and scanning electron micrograph was observed. Over 90% of the theoretical density was attained at 1250 $^{\circ}C$ within 10 minutes for C-powders, while the similar densification required a sintering temperature of 1450 $^{\circ}C$ for B-powders. Such a difference in sinterability between B and C-powders was discussed in terms of the effect of particle size reduction and activated sintering caused by Ni and/or Fe introduced during ball milling.

  • PDF