• Title/Summary/Keyword: B cell epitope

Search Result 42, Processing Time 0.041 seconds

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.

Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach

  • Islam, Sk Injamamul;Mou, Moslema Jahan;Sanjida, Saloa;Tariq, Muhammad;Nasir, Saad;Mahfuj, Sarower
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.11.1-11.20
    • /
    • 2022
  • Vibrio harveyi belongs to the Vibrio genus that causes vibriosis in marine and aquatic fish species through double-stranded DNA virus replication. In humans, around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness). A large amount of virus particles can be found in the cytoplasm of infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the virus. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as having a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computer revealed that the vaccination might elicit immune reactions in the actual life after injection. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.

The Study of MHC class I Restricted CD8+ T Cell Mediated Immune Responses against Mycobacterium tuberculosis Infection: Evidence of M. tuberculosis S pecific CD8+ T Cells in TB Patients and PPD+ Healthy Individuals (MHC class I 분자들에 의해 제시되는 Epitope을 인지하는 CD8+ T 림프구의 결핵균 감염에 대한 면역반응의 연구: 결핵 환자와 PPD+ 건강개체에 존재하는 결핵균 항원에 특정한 CD8+ T세포)

  • Cho, Jang-Eun;Lee, Kyung Wha;Park, Seung Kyu;Cheon, Seon-Hee;Cho, Sang-Nae;Cho, Sungae
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • Background: The protective immunity against tuberculosis (TB) involves both CD4+ T cells and CD8+ T cells. In our previous study, we defined four Mycobacterium tuberculosis derived peptide epitopes specific for HLA-$A^*0201$ restricted CD8+ T cells ($ThyA_{30-38}$, $RpoB_{127-135}$, $85B_{15-23}$, $PstA1_{75-83}$). In this study, we investigated the immune responses induced by these peptide specific CD8+ T cells in latently and chronically infected people with TB. Methods: We characterized these peptide specific CD8+ T cell population present in PBMC of both TB patients and PPD+healthy people using IFN-${\gamma}$elispot assay, intracellular staining and HLA-A2 dimer staining. Results: The frequency of peptide specific CD8+ T cell was in the range of 1 to 25 in $1.7{\times}10^5$ PBMC based on ex vivo IFN-${\gamma}$ elispot assay, demonstrating that these peptide specific CD8+ T cell responses are induced in both TB patients and PPD+ people. Short term cell lines (STCL) specific for these peptides proliferated in vitro and secreted IFN-${\gamma}$ upon antigenic stimulation in PPD+ donors. Lastly, HLA-$A^*0201$ dimer assays indicated that $PstA1_{75-83}$ specific CD8+ T cell population in PPD+ healthy donors is heterogeneous since approximately 25~33% of $PstA1_{75-83}$ specific CD8+ T cell population in PPD+ healthy donors produced IFN-${\gamma}$ upon peptide stimulation. Conclusion: Our results suggest that MHC class I restricted CD8+ T cell mediated immune responses to M. tuberculosis infection are induced in both TB patients and PPD + people; however, the CD8+ T cell population is functionally heterogeneous.

Immunopreventive Effects against Murine H22 Hepatocellular Carcinoma in vivo by a DNA Vaccine Targeting a Gastrin-Releasing Peptide

  • Meko'o, Jean Louis Didier;Xing, Yun;Zhang, Huiyong;Lu, Yong;Wu, Jie;Cao, Rongyue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.9039-9043
    • /
    • 2014
  • There is a continuing need for innovative alternative therapies for liver cancer. DNA vaccines for hormone/growth factor immune deprivation represent a feasible and attractive approach for cancer treatment. We reported a preventive effect of a DNA vaccine based on six copies of the B cell epitope GRP18-27 with optimized adjuvants against H22 hepatocarcinoma. Vaccination with pCR3.1-VS-HSP65-TP-GRP6-M2 (vaccine) elicited much higher level of anti-GRP antibodies and proved efficacious in preventing growth of transplanted hepatocarcinoma cells. The tumor size and weight were significantly lower (p<0.05) in the vaccine subgroup than in the control pCR3.1-VS-TP-HSP65-TP-GRP6, pCR3.1-VS-TP-HSP65-TP-M2 or saline subgroups. In addition, significant reduction of tumor-induced angiogenesis associated with intradermal tumors of H22 cells was observed. These potent effects may open ways towards the development of new immunotherapeutic approaches in the treatment of liver cancer.

Monoclonal Antibody-Based Indirect-ELISA for Early Detection, Diagnosis and Monitoring of Epiphytic Didymella bryoniae in Cucurbits.

  • Lee, Seon-Chul;Shim, Chang-Ki;Kim, Dong-Kil;Bae, Dong-Won;Kyo, Seo-Il;Kim, Hee-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.133.1-133
    • /
    • 2003
  • Gummy stem blight, caused by Didymella bryoniae occurs exclusively on cucurbits. This fungus has been known not to produce its pycnidium in vitro unless irradiated. Through this study, we optimized cultural conditions for mass-production of pycnidiospore by Metal Halide Lamp irradiation. In brief, the mycelial was cultured at $26^{\circ}C$ on PDA, for 2 days under the darkness, and then the plate was illuminated with MH lamp continuously for 3-4 days at $26^{\circ}C$, a great number of pycnidia was simultaneously formed. Thus produced pycnidiospores were used as immunogen. From fusions of myeloma cell (v-653) with splenocytes from immunifed mice were car ried out. And, two hybridoma cell lines that recognized the immunogen Didymella bryoniae were obtained. One Monoclonal Antibody, Db1, recognized the supernatant and the other monoclonal antibody, Db15, recognized the spore. Two clones were selected which were used to produce ascite fluid two MAb Db1 and Db15, were immunotyped and identified as IgG1 and IgG2b, respectively. Titer of MAb Db1 and MAb Db15 was measured absorbance exceeded 0.5 even at a $10^{-5}$ dilution. The MAbs reacted positively with Didymella bryoniae but none reacted with other of fungi and CMV, CGMMV Sensitivity of MAb was precise enough to detect spore concentration as low as $10^{3}$ well by indirect ELISA characterization of the MAb Db1, Db15 antigen by heat and protease treatments show that the epitope recognized by the MAb Bb1, Db15 were a glycoprotein.

  • PDF

Monoclonal Antibody-Based Indirect-ELISA for Early Detection and Diagnosis of Epiphytic Didymella bryoniae in Cucurbits

  • Lee, Sun-Cheol;Han, Ki-Soo;Lee, Jung-Han;Kim, Dong-Kil;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.260-265
    • /
    • 2003
  • Gummy stem blight caused by Didymella bryoniae occurs exclusively in cucurbits. This fungus has been known not to produce its pycnidium in vitro unless irradiated. In this study, cultural conditions for the mass-production of pycnidiospore by Metal Halide (MH) lamp irradiation were maximized. The mycelia were cultured at $26^{\circ}C$ on PDA for 2 days under dark condition, and then the plate was illuminated with MH lamp continuously for 3-4 days at $26^{\circ}C$. Results show that a great number of pycnidia were simultaneously formed. The pycnidiospores produced were then used as immunogen. Fusions of myeloma cell (v-653) with splenocytes from immunized mice were carried out. Two hybridoma cell lines that recognized the immunogen D. bryoniae were obtained. One monoclonal antibody (MAb), Dbl, recognized the supernatant while another MAb, Db15, recognized the spore. Two clones were selected which were used to produce ascite fluid of the two MAb, Dbl and Db15, the immunotypes of which were identified as IgG1 and IgG2b, respectively. Titers of MAb Dbl and MAb Db15 were measured and the absorbance exceeded 0.5 even at a $10^{-5}$ dilution. The MAbs reacted positively with D. bryoniae but none reacted with other viral isolates, Cucumber mosaic virus and Cucumber green mottle mosaic virus. Sensitivity of MAb was precise enough to detect spore concentration as low as $10^{-3}$/well by indirect ELISA. Characterization of the MAbs Dbl, Db15 antigen by heat and protease treatments, which suggests that the epitope recognized by these two MAbs was glycoprotein.

DNA Vaccines Encoding Toxoplasma gondii Cathepsin C 1 Induce Protection against Toxoplasmosis in Mice

  • Han, Yali;Zhou, Aihua;Lu, Gang;Zhao, Guanghui;Sha, Wenchao;Wang, Lin;Guo, Jingjing;Zhou, Jian;Zhou, Huaiyu;Cong, Hua;He, Shenyi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.505-512
    • /
    • 2017
  • Toxoplasma gondii cathepsin C proteases (TgCPC1, 2, and 3) are important for the growth and survival of T. gondii. In the present study, B-cell and T-cell epitopes of TgCPC1 were predicted using DNAstar and the Immune Epitope Database. A TgCPC1 DNA vaccine was constructed, and its ability to induce protective immune responses against toxoplasmosis in BALB/c mice was evaluated in the presence or absence of the adjuvant ${\alpha}-GalCer$. As results, TgCPC1 DNA vaccine with or without adjuvant ${\alpha}-GalCer$ showed higher levels of IgG and IgG2a in the serum, as well as IL-2 and $IFN-{\gamma}$ in the spleen compared to controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). Upon challenge infection with tachyzoites of T. gondii (RH), $pCPC1/{\alpha}-GalCer$ immunized mice showed the longest survival among all the groups. Mice vaccinated with DNA vaccine without adjuvant (pCPC1) showed better protective immunity compared to other controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). These results indicate that a DNA vaccine encoding TgCPC1 is a potential vaccine candidate against toxoplasmosis.

Production of Group Specific Monoclonal Antibody to Aflatoxins and its Application to Enzyme-linked Immunosorbent Assay

  • Kim, Sung-Hee;Cha, Sang-Ho;Karyn, Bischoff;Park, Sung-Won;Son, Seong-Wan;Kang, Hwan-Goo
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Through the present study, we produced a monoclonal antibody against aflatoxin B1 (AFB1) using AFB1-carboxymethoxylamine BSA conjugates. One clone showing high binding ability was selected and it was applied to develop a direct competitive ELISA system. The epitope densities of AFB1-CMO against BSA and KLH were about 1 : 6 and 1 : 545, respectively. The monoclonal antibody (mAb) from cloned hybridoma cell was the IgG1 subclass with ${\lambda}$-type light chains. The $IC_{50}s$ of the monoclonal antibody developed for AFB1, AFB2, AFG1 and AFG2 were 4.36, 7.22, 6.61 and 29.41 ng/ml, respectively, based on the AFB1-KLH coated ELISA system and 15.28, 26.62, 32.75 and 56.67 ng/ml, respectively, based on the mAb coated ELISA. Cross-relativities of mAb to AFB1 for AFB2, AFG1 and AFG2 were 60.47, 65.97 and 14.83% in the AFB1-KLH coated ELISA, and 59.41, 46.66 and 26.97% in the mAb coated ELISA, respectively. Quantitative calculations for AFB1 from the AFB1-Ab ELISA and AFB1-Ag ELISA ranged from 0.25 to 25 ng/ml ($R^2$ > 0.99) and from 1 to 100 ng/ml ($R^2$ > 0.99), respectively. The intra- and inter-assay precision CVs were < 10% in both ELISA assay, representing good reproducibility of developed assay. Recoveries ranged from 79.18 to 91.27%, CVs ranged from 3.21 to 7.97% after spiking AFB1 at concentrations ranging from 5 to 50 ng/ml and following by extraction with 70% methanol solution in the Ab-coated ELISA. In conclusion, we produced a group specific mAb against aflatoxins and developed two direct competitive ELISAs for the detection of AFB1 in feeds based on a monoclonal antibody developed.

Human Brain Pyridoxal-5'-phosphate Phosphatase: Production and Characterization of Monoclonal Antibodies

  • Kim, Dae-Won;Eum, Won-Sik;Choi, Hee-Soon;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Sohn, Eun-Joung;Hwang, Seok-Il;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Choi, Soo-Young
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.703-708
    • /
    • 2005
  • We cloned and expressed human pyridoxal-5'-phosphate (PLP) phosphatase, the coenzymatically active form of vitamin $B_6$, in Escherichia coli using pET15b vector. Monoclonal antibodies (mAb) were generated against purified human brain PLP phosphatase in mice, and four antibodies recognizing different epitopes were obtained, one of which inhibited PLP phosphatase. The binding affinities of these four mAbs to PLP phosphatase, as determined using biosensor technology, showed that they had similar binding affinities. Using the anti-PLP phosphatase antibodies as probes, we investigated their cross-reactivities in various mammalian and human tissues and cell lines. The immunoreactive bands obtained on Western blots had molecular masses of ca. 33 kDa. Similarly fractionated extracts of several mammalian cell lines all produced a single band of molecular mass 33 kDa. We believe that these PLP phosphatase mAbs could be used as valuable immunodiagnostic reagents for the detection, identification, and characterization of various neurological diseases related to vitamin $B_6$ abnormalities.

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum;Kwon, Sang-Hoon;Ahn, Chi-Seok;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyeok-Yil;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.758-763
    • /
    • 2011
  • Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.