• Title/Summary/Keyword: B 16/F10 melanoma cells

Search Result 370, Processing Time 0.03 seconds

Change of ROS Generation and Antioxidant Enzyme Activity of Flavonol Quercetin in the Presence of Vitamin E, L-Ascorbit acid, Reduced Glutathione on the B16F10 Murine Melanoma Cells (B16F10 세포에서 Quercetin과 Vitamin E, L-Ascorbic acid, 환원형 글루타치온과의 병용 투여에 의한 활성산소종 발생과 항산화 효소의 활성 변화)

  • 허정심;김안근
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.432-437
    • /
    • 2003
  • It has been known that quercetin, a bioflavonoid widely distributed in fruits and vegetables as dietary-derived flavonoid and exert significant multiple biological effects such as antioxidant and anti-inflammatory, anti-tumor effects. In addition, it has been shown to have a chemoprotective role in cancer, though complex effects on signal transduction involved in cell proliferation and angiogenesis. The present study investigated whether quercetin can enhance antioxidant enzyme activity (glutathione peroxidase: GPx, superoxide dismutase: SOD, catalase: CAT) and regulate the reactive oxygen species (ROS) generation in the presence of vitamin E, L-ascorbic acid, reduced glutathione (GSH) on B16F10 murine melanoma cells. After 48h treatment of cells with quercetin in the presence of vitamin E, L-ascorbic acid, GSH, we measured the cytotoxicities by MTT assay. The cells exhibited a dose-dependent inhibition in their proliferation in the presence of vitamin E, L-ascorbic acid, GSH respectively. We also investigated the effects of antioxidant enzyme activity and ROS generation. The antioxidant enzyme activity of quercetin in the presence of vitamin E was stronger than GSH, L-ascorbic acid, the same treatments decreased ROS generation in B16F10 murine melanoma cells. Taken together, these result demonstrate that the antioxidant effect of quercetin can enhanced in the presence of vitamin E and it might plays an important role in anti-oxidative effects.

Adenine Inhibits B16-F10 Melanoma Cell Proliferation

  • Silwal, Prashanta;Park, Seung-Kiel
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2020
  • Adenine, a purine base, is a structural component of essential biomolecules such as nucleic acids and adenine nucleotides. Its physiological roles have been uncovered. Adenine suppresses IgE-mediated allergy and LPS-induced inflammation. Although adenine is known to inhibit lymphocyte proliferation, the effect of adenine to melamoma cells is not reported. Here, we investigated the growth inhibitory effects of adenine on B16-F10 mouse melanoma cells. Adenine suppressed the proliferation of B16-F10 cells in dose-dependent manner with the maximal inhibitory dose of 2 mM. Adenine treatment induced cell death molecular markers such as PARP and caspase 3 cleavages. Pan-caspase inhibitor z-VAD dramatically rescued the cell death molecular markers, cell proliferation recovered marginally. These results provide the possibility of adenine to be used as an anti-tumor agent.

Activation of Akt/PKB at Serine 473 by N-acetylphytosphingosine (NAPS) and $C_{2}-ceramide$ Reduces Melanin Synthesis in B16F10 Mouse Melanoma Cells

  • Yi, Seh-Yoon;Han, Seon-Kyu;Park, Mee-Kyung;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • Sphingolipid metabolites regulate many aspects of cell proliferation, differentiation, and apoptosis. In the present study, we have assessed the effects of the novel phytosphingosine derivative, N-acetylphytospingosine (NAPS), on the depigmentation of murine B16F10 melanoma cells, and have also attempted to identify the possible signaling pathway involved, in comparison with $C_{2}-ceramide$. NAPS and $C_{2}-ceramide$ both inhibited the growth of the B16F10 cells in a dose-dependent manner. Melanin content and tyrosinase activity were significantly reduced in response to treatment with NAPS and $C_{2}-ceramide$ at concentrations in a range between $1-5\;{\mu}M$. However, the levels of tyrosinase mRNA, as well as the levels of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) genes and the level of tyrosinase protein remained unaffected by treatment with either NAPS or $C_{2}-ceramide$. We also attempted to determine the signaling pathway exploited by NAPS and $C_{2}-ceramide$. Interestingly, the phosphorylation of Akt/PKB at serine 473 by NAPS was reduced at the 5 minute mark, whereas $C_{2}-ceramide$ induced the phosphorylation of Akt/PKB at serine 473. Finally, Akt/PKB activity in the NAPS-treated cells was elevated in comparison with the untreated cells. LY294002, a specific PI3-K inhibitor which is located upstream of Akt/PKB, inhibited the phosphorylation of Akt/PKB, but induced an increase in melanin synthesis. These results suggest that the activation of Akt/PKB at serine 473 is related with the suppression of melanin production in the B16F10 mouse melanoma cells. Therefore, the mechanisms exploited by NAPS and $C_{2}-ceramide$ responsible for the depigmentation of B16F10 cells were concluded to involve the inhibition of melanosomal tyrosinase activity.

Antimetastatic Effect of Proteoglycan Isolated from the Mycelium of Ganoderma lucidum IY009 in vitro and in vivo (영지버섯 균사체 (Ganoderma lucidum IY009)로부터 추출한 단백다당체의 전이암 억제 효과)

  • 백성진;김용석;용환미;채주병;이선애;배우철;박동우;김동연;이준우
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • $\beta$-Immunan, a proteoglycan, was isolated from the mycelium of Canoderma lucidum which belongs to a medicinal mushroom. The effects of $\beta$-Immunan on cell-cell and cell-matrix interactions mediated by carbohydrate-recognition and the mechanism responsible for the inhibition of experimental metastasis of Bl6-F10 and B16/BL6 murine melanoma were studied. The results showed that $\beta$-Immunan inhibited Bl6-Fl melanoma cell's adhesion to laminin and asialofetuin-induced homotypic aggregation and reduced invasion against Bl6-F10 murine melanoma cells through matrigel in vivo assay. When $\beta$-Immunan was intraperitoneally administrated to C57B/6 mice bearing B16/BL6 murine melanoma cells, it was decreased the number of pulmonary metastatic colony by the dose dependent manner ranging from 20 to 100 mg/kg/day. The results indirectly indicate that clinical treatment with $\beta$-Immunan might be expected to exhibit anti-metastatic effect. In the pulmonary metastasis, the number of pulmonary metastatic colony of melanoma when $\beta$-Immunan was intraperitoneally administrated to C57BL/6 mice bearing B16/BL6 murine melanoma cells by intravenous injection were decreased by the dose dependent manner ranging from 20 to 100 mg/kg/day.

Ginsenoside F1 Modulates Cellular Responses of Skin Melanoma Cells

  • Yoo, Dae-Sung;Rho, Ho-Sik;Lee, Yong-Gyu;Yeom, Myung-Hun;Kim, Duck-Hee;Lee, Sang-Jin;Hong, Sung-Youl;Lee, Jae-Hwi;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Ginsenoside (G)-F1 is an enzymatic metabolite generated from G-Rg1. Although this metabolite has been reported to suppress platelet aggregation and to reduce gap junction-mediated intercellular communication, the modulatory activity of G-F1 on the functional role of skin-derived cells has not yet been elucidated. In this study, we evaluated the regulatory role of G-F1 on the cellular responses of B16 melanoma cells. G-F1 strongly suppressed the proliferation of B16 cells up to 60% at 200 ${\mu}g/mL$, while only diminishing the viability of HEK293 cells up to 30%. Furthermore, G-F1 remarkably induced morphological change and clustering of B16 melanoma cells. The melanin production of B16 cells was also significantly blocked by G-F1 up to 70%. Interestingly, intracellular signaling events involved in cell proliferation, migration, and morphological change were up-regulated at 1 h incubation but down-regulated at 12 h. Therefore, our results suggest that G-F1 can be applied as a novel anti-skin cancer drug with anti-proliferative and anti-migration features.

Effects of N-acetylphytosphingosine on melanogenesis of B16F10 murine melanoma cells.

  • Park, M. K.;Park, C. S.;Kim, J. W.;R. M. Ahn;Y. S. Yoo;S. Y. Yi
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.241-242
    • /
    • 2003
  • The effects of N-acetylphytospingosine(NAPS), one of the phytospingosine derivatives, on melanogenesis of B 16F 1 0 mouse melanoma cell lines were investigated. We assessed the effect of NAPS on the depigmentation of B16F10 cells. The melanin content of cells was significantly reduced by NAPS. We examined the inhibitory effect of NAPS on tyrosinase activity using L-dopa as a substrate and the results showed that tyrosinase activity was inhibited in a does-dependent manner. The mRNA level of tyrosinase as well as that of tyrosinase related protein-l (TRP-l) and tyrosinase related protein-2 (TRP-2) genes were not affected by NAPS based on a reverse transcription-polymerase chain reaction (RT-PCR) assay. We also performed a Western blotting analysis using anti-tyrosinase antibody. It showed that there is no change in tyrosinase protein level after treatment of NAPS. These results suggest that the depigmenting mechanism of NAPS in B16F10 melanoma cells involves inhibition of melanosomal tyrosinase activity, rather than the mRNA expression or protein level of tyrosinase.

  • PDF

Stimulating effect of modified Goa-Gi-Um herbal remedy on melanogenesis in B16F10 melanoma cells (B16F10 멜라노마세포에서 과기음가미방의 멜라닌 생성 촉진 효과)

  • Moon, Na-Rang;Kim, Se Yoon;Lee, Jin Hyuk;Lee, Jung Bok;Park, Sunmin
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.69-74
    • /
    • 2013
  • Objectives : Since hypopigmentation is known to increase the risk of skin cancer, melanogenesis in the skin needs to be regulated. Here, we evaluated the melanogenesis stimulatory effects of a modified Goagium herbal remedy (HR) and HR+ox bile (Bos taurus domesticus) extract (OBE) to address hypopigmentation disorders. Methods : B16F10 melanoma cells were treated with different dosages of HR and HR+OBE for 24 to 48 h after 1 h of 10 nM ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH). After the treatment, cell viability, tyrosinase activity, melanin synthesis and the expression of genes related to melanin synthesis were measured and the regulation of the ${\alpha}$-MSH signalling through cAMP responding element binding protein (CREB) was determined. Results : HR and HR+OBE with the ranges of $15{\sim}100{\mu}g/mL$ did not affect cell viability in melanoma cells. The 1 h treatment of HR+OBE (50 and $100{\mu}g/mL$) potentiated the phosphorylation of CREB by enhancing ${\alpha}$-MSH signaling and its 24 h treatment increased CREB expression. Consistent with CREB potentiation, their treatment for 24 h, the expression of microphthalmia-associated transcription factor (MIFT), tyrosinase, tyrosinase related protein (TRP)-1 and TRP-2 were increased in realtime PCR. Ultimately, the 48 h treatment of HR+OBE (50 and $100{\mu}g/mL$) increased tyrosniase activity and melanin contents in the melanoma cells in comparison to the control. Conclusions : HR+OBE (50 and $100{\mu}g/mL$) increases melanin synthesis in B16F10 melanoma cells via the stimulation of tyrosinase activity and expression of MIFT, tyrosinase, TRP-1 and TRP-2. HR+OBE can be used as the a possible treatment for hypopigmentation of the skin.

Effect of Persimmon Leaves Extract on the Melanogenesis and Cell Viability in Cultured Melanoma Cells Injured by Reactive Oxygen Species (시엽추출물이 활성산소로 손상된 멜라닌세포종의 멜라닌합성 및 세포생존율에 미치는 영향)

  • Ha, Dae-Ho;Lee, Jae-Kyoo;Choi, Yu-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1304-1308
    • /
    • 2008
  • This study was performed to evaluate the effect of persimmon leaves extract on the reactive oxygen species (ROS) in cultured melanoma cells. The B16/F10 melanoma cells were treated with various concentrations of t-butyl hydroperoxide (t-BHP). And also, the effect of persimmon leaves (PL) extract on the cytotoxicity mediated by t-BHP was done on the cell viability, tyrosinase activity and melanogenesis by colorimetric assays. In this study, t-BHP decreased cell viability in dose-dependent manner and XTT90 and XTT50 values were measured at 10 and 35 uM of PL, respectively in these culture. And also, XTT50 value was assessed as a highly toxic effect on cultured melanoma cells by the toxic criteria. In the effect of PL extract on the t-BHP-mediated cytotoxicity, PL extract significantly increased the cell viability injured by t-BHP in cultured B16/F10 melanoma cells. PL also showed the decreased tyrosinase activity and melanogenesis. From these results, it is suggested that ROS such as t-BHP showed highly toxic effect on cultured melanoma cells, and also, PL extract inhibited the tyrosinase activity and melanogenesis in cultured melanoma cells injured by ROS.

EGCG induces Apoptosis under Hypoxic State in B16F10 Melanoma Cancer Cells (저산소증 상태에서 B16F10 피부암 세포에 EGCG를 처리하였을 때의 apoptosis 효과)

  • Kim, Yoon-Yi;Kim, In-Seop;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.251-256
    • /
    • 2011
  • EGCG, catechins in green tea, is a kind of phytochemical. Through the regulation of signal pathways, EGCG has been known to show anti-oxidant and anti-tumor effects in cells. In this study, we investigated the apoptotic effects of EGCG through AMP-activated protein kinase (AMPK) signal pathways, including hypoxia inducible factor-1 alpha (HIF-$1{\alpha}$). The experiments were performed in B16F10 melanoma cells in a hypoxic state. AMPK is activated by ATP consumption such as nutrient deficiency, exercise, heat shock, etc. The activated AMPK that plays an important role as an energy sensor inhibits proliferation of cancer cells, as well as inducing apoptosis. HIF-$1{\alpha}$, the primary transcriptional regulator of the response to oxygen deprivation, plays a critical role in modulating tumor growth and angiogenesis in a hypoxic state. The apoptotic effects of EGCG were studied in B16F10 cells in a hypoxic state. The results show that EGCG inhibits the transcriptional activity of HIF-$1{\alpha}$ and induces apoptosis. These observations suggest that EGCG may exert inhibitory effects of angiogenesis and control tumor cell growth in hypoxic melanoma cells.

Effect of Myricetin on mRNA Expression of Different Antioxidant Enzymes in B16F10 Murine Melanoma Cells (B16F10 Murine Melanoma Cell에서 Myricetin이 항산화효소의 m-RNA 발현에 미치는 영향)

  • Yu Ji Sun;Kim An Keun
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.86-91
    • /
    • 2005
  • Flavonoids are class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including antiviral, antithrombotic, antiinflammatory, antihistaminic, antioxidant and free-radica 1 scavenging abilities. The antioxidant enzyme (AOE) system plays an important role in the defense against oxidative stress insults. To determine whether flavonoid, myricetin can exert antioxidative effects not only directly by modulating the AOE system but also scavenging free radical, we investigated the influence of the flavonoid myricetin on cell viability, different antioxidant enzyme activities, ROS level and the expression of different antioxidant emzyme in B16F10 murine melanoma cells. Myricetin in a concentration range from 6.25 to $50\;{\mu}M$ decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities, but catalase (CAT) activity was increased. In the myricetin-treated group, ROS levels were decreased dose-dependently. Antioxidant enzyme expression was measured by RT-PCR. Myricetin treatment of B16F10 cells increased catalase expression. Expression levels of copper zinc superoxide dismutase (CuZn SOD) were not affected by exposure of myricetin. Manganese superoxide dismutase (Mn SOD) and GPx expression levels decreased slightly after myricetin treatment. In conclusion, the antioxidant capacity of myricetin was due to CAT and free-radical scavenging.