• Title/Summary/Keyword: Az

Search Result 665, Processing Time 0.025 seconds

The characteristic of low pressure casting AZ91D Magnesium alloy wheel (저압주조방식에 의한 AZ91D 마그네슘 휠 특성)

  • Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4963-4967
    • /
    • 2012
  • In this study, 18-inch wheels, magnesium alloy AZ91D was developed and we compared overseas go on sale magnesium wheels and same specifications of the aluminum wheels mechanical properties. Prototype 18-inch magnesium wheels by a low-pressure casting method to achieve the same specifications of aluminum wheels and reduced 26% of the weight, the new edition of magnesium wheels compared to the same level of elongation, tensile strength, hardness. Casting and heat treatment process to improve future need to improve the yield strength is expected.

Copper Electroplating on Mg Alloy in Pyrophosphate Solution

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.124.1-124.1
    • /
    • 2016
  • In this work, uniform thickness and good adhesion of electrodeposited copper layer were achieved on AZ91 Mg alloy in alkaline noncyanide copper solution containing pyrophosphate ion by employing appropriate zincate pretreatment. Without zincate pretreatment, the electrodeposited copper layer on AZ91 Mg alloy was porous and showed poor adhesion which was explained by small number of nucleation sites of copper due to rapid dissolution of the magnesium substrate in the pyrophosphate solution. The zincate pretreatment was found as one of the most important steps that can form a conducting layer to cover AZ91 surface which decreased the dissolution rate of AZ91 Mg alloy about 40 times in the copper pyrophosphate solution. Electrodeposited copper layer on AZ91 Mg alloy after an appropriate zincate pretreatment showed good adhesion and uniform thickness with bright surface appearance, independent of the deposition time but the surface roughness of the electrodeposited copper layer increased with increasing Cu deposition time.

  • PDF

Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Containing a Small Amount of Sn (미량 Sn을 함유한 AZ91 마그네슘 합금의 미세조직 및 기계적 특성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.3
    • /
    • pp.115-120
    • /
    • 2014
  • Microstructural features were comparatively investigated in AZ91 (Mg-9%Al-1%Zn) and AZ91-0.5%Sn alloys, in order to clarify the reason for the enhancement in room temperature tensile properties by the addition of small amount of Sn in Mg-Al-based alloy. In as-cast state, the Sn-containing alloy showed increased YS, UTS and elongation than the Sn-free alloy. The microstructural examination revealed that various factors including finer cell size, reduction of lamellar (${\alpha}+{\beta}$) phase and morphological change of bulky ${\beta}$ phase from partially divorced shape to fully divorced shape, are likely to be responsible for the improvement in tensile properties for the Sn-containing alloy. It is noted that two alloys showed similar tensile properties after solution treatment. This implies that microstructural evolution related to the ${\beta}$ phase plays a key role in better tensile properties in the Sn-containing alloy.

Effect of Processing Variables on the High Temperature Formability of AZ31 Mg alloy (AZ31 Mg 합금의 가공 조건에 따른 고온 성형성 연구)

  • Lee B. H.;Shin K.S.;Lee C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.80-83
    • /
    • 2004
  • High temperature deformation behavior of AZ31 Mg alloy was investigated in this study on the basis of a processing map $(\varepsilon\approx0.6)$. To construct a processing map, compression tests were carried out at wide range of temperatures and strain rates $(T=250\~500^{\circ}C,\;\varepsilon=10^{-4}\~100/s)$. Two regions of high deformation efficiency $(\eta)$ were identified as: (1) a dynamic recrystalization (DRX) domain at $250^{\circ}C$ and 1/s and (2) a superplasticity domain at $450^{\circ}C$ and $10^{-4}/s$. Possible deformation mechanisms operating at high temperature were discussed in relation to the activation energy. A two-stage deformation method was found to be effective in enhancing the superplasticity of AZ31 Mg alloy. From the two-stage deformation method, tensile elongation of $1200\%$ was obtained at the superplastic domain.

  • PDF

Flow Softening Behavior during the High Temperature Deformation of AZ31 Mg alloy (AZ31 Mg 합금의 고온 변형 시의 동적 연화 현상)

  • Lee, Byoung-Ho;Reddy, N.S.;Yeom, Jong-Teak;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.70-73
    • /
    • 2006
  • In the present study, the flow-softening behavior occurring during high temperature deformation of AZ31 Mg alloy was investigated. Flow softening of AZ31 Mg alloy was attributed to (1) thermal softening by deformation heating and (2) microstructural softening by dynamic recrystallization. Artificial neural networks method was used to derive the accurate amounts of thermal softening by deformation heating. A series of mechanical tests (High temperature compression and load relaxation tests) was conducted at various temperatures ($250^{\circ}C{\sim}500^{\circ}C$) and strain rates ($10^{-4}/s{\sim}100/s$) to formulate the recrystallization kinetics and grain size relation. The effect of DRX kinetics on microstructure evolution (fraction of recrystallization) was evaluated by the unified SRX/DRX (static recrystallization/dynamic recrystallization) approaches

  • PDF

A Study of Rolling Characterization on Mg Alloy Sheet (마그네슘 합금 판재의 압연특성연구)

  • Jeong, Y.G.;Lee, J.B.;Kim, W.J.;Lee, G.A.;Choi, S.;Jeong, H.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

Effect of Initial Texture on the Twinning Formation of AZ31 Mg Alloy (AZ31 Mg 합금의 쌍정 형성에 미치는 초기 집합조직의 영향)

  • Lee, Byoung-Ho;Kim, Yong-Woo;Park, Sung-Hyuk;Lee, Chong-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.467-472
    • /
    • 2007
  • In this study, the effects of initial texture on the twinning formation of AZ31 Mg rolled sheet was investigated. Uniaxial compression tests were carried out on samples cut along the normal direction(ND) and roiling direction(RD), respectively, of rolled AZ31 Mg alloy sheet at various temperatures (RT, 200, 250, 300, 350, $400^{\circ}C$) with the fixed strain rate($10^{-2}/s$). The results showed that deformation twining occurred actively only in the RD specimens, which promoted homogeneous deformation as compared to the ND specimens. The effect of temperature on the formation of deformation twins was also investigated, and the slip/twin transition temperature was found to be approximately $250^{\circ}C$.

Characteristics of Butt Welded AZ31 Magnesium Alloy with Laser Welding Conditions (레이저 용접조건에 따른 AZ31 마그네슘합금 맞대기 용접부의 특성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.517-523
    • /
    • 2009
  • Magnesium alloys have many advantages such as a low density, high strength/weight ratio and well recycle. And joining process is absolutely necessary to expand the field of application of magnesium alloy. The main problems of conventional process such as arc welding for magnesium alloy are the inflammability, a tendency toward crack formation and the appearance of porosity during solidification. Laser welding technology is a promising means for overcoming these difficulties. This study is related to the laser weldability of AZ31 magnesium alloy, an all-purpose wrought alloy with good strength and ductility. The effect of welding conditions on the weldability of butt joints was examined. Also, the mechanical properties of butt welded joints were investigated by tensile test and hardness test.

Deep drawing of AZ31 alloy sheet in the warm forming temperature (AZ31 합금의 온간 디프 드로잉에 관한 연구)

  • KIM M. C.;LEE Y. S.;KWON Y. N.;LEE J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.175-179
    • /
    • 2004
  • Since the formability of AZ31 magnesium alloy is not good in room temperature, it is known that high temperature forming is advantageous. However, many studies are necessary to find the proper forming temperature for Mg alloy. In this study, experimental and FEM analysis are performed to investigate the forming temperature for AZ31 sheet. The deep drawing process of square cup is used in forming experiment and FEA. The investigations are performed in three forming temperature, room temperature, $250^{\circ}C\;and\;400^{\circ}C$. The square cup is well formed in $250^{\circ}C$ forming temperature, on the other hand, the crack and failure is presented in corner section in room and $250^{\circ}C$ forming temperature. The main cause is investigated as the effect of hardening range by the experimental and FEM results.

  • PDF

Construction of Yield Criterion for AZ31 Sheet Alloy by Considering Tension-Compression Asymmetry (인장-압축 비대칭성을 고려한 AZ31 판재의 항복함수 구성)

  • Yoon, J.H.;Cazacu, Oana;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.527-533
    • /
    • 2011
  • In order to take into account the strong anisotropy and the tension-compression asymmetry of AZ31 sheet alloy, the Cazacu-Plunkett-Barlat yield criterion(Cazacu, 2006), CPB06, was adopted in the present material modeling. The variation of anisotropic coefficients which describe the yield surface evolution of AZ31 is optimized using an interpolation function based on specific calibration results. It generates continuous yield surfaces, which makes it possible to describe the different hardening rates in tension and compression as well as tension-compression asymmetry of magnesium alloys. The ability of the CPB06 yield criterion to predict experimental results was demonstrated and compared with that of the Hill(1948) yield criterion.