• Title/Summary/Keyword: Axon reflex

Search Result 13, Processing Time 0.023 seconds

Seasonal acclimation in sudomotor function evaluated by QSART in healthy humans

  • Shin, Young Oh;Lee, Jeong-Beom;Kim, Jeong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.499-505
    • /
    • 2016
  • The quantitative sudomotor axon reflex testing (QSART) is a classic test of routine postganglionic sudomotor function. We investigated sudomotor function by QSART after summer (July 2012) and winter (January 2013) seasonal acclimation (SA) in the Republic of Korea. QSART with acetylcholine (ACh) iontophoresis were performed to determine directly activated (DIR) and axon reflex-mediated (AXR1, 2) sweating rate. Onset time of axon reflex, activated sweat gland density (ASGD), activated sweat gland output (ASGO), tympanic and skin temperatures ($T_{ty}$, $T_{sk}$), basal metabolic rate (BMR), and evaporative loss volume changes were measured. Tympanic and mean body temperature (${\bar{T}}_b$; calculated from $T_{ty}$, $T_{sk}$) were significantly lower after summer-SA than that of winter-SA. Sweat onset time was delayed during winter-SA compared to that after summer-SA. BMR, AXR(1), AXR(2), and DIR sweat rates, ASGD and ASGO, and evaporative loss volume were significantly diminished after winter-SA relative to after summer-SA. In conclusion, changes in sweating activity measured by QSART confirmed the involvement of the peripheral nervous system in variation of sudomotor activity in seasonal acclimation.

Heat Acclimatization in Hot Summer for Ten Weeks Suppress the Sensitivity of Sweating in Response to Iontophoretically-administered Acetylcholine

  • Lee, Jeong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.349-355
    • /
    • 2008
  • To determine the peripheral mechanisms involved in thermal sweating during the hot summers in July before acclimatization and after acclimatization in September, we evaluated the sweating response of healthy subjects (n=10) to acetylcholine (ACh), a primary neurotransmitter involved in peripheral sudomotor sensitivity. The quantitative sudomotor axon reflex test (QSART) measures sympathetic C fiber function after iontophoresed ACh evokes a measurable reliable sweat response. The QSART, at 2 mA for 5 min with 10% ACh, was applied to determine the directly activated (DIR) and axon reflex-mediated (AXR) sweating responses during ACh iontophoresis. The AXR sweat onset-time by the axon reflex was $1.50{\pm}0.32$ min and $1.84{\pm}0.46$ min before acclimatization in July and after acclimatization in September, respectively (p<0.01). The sweat volume of the AXR(l) [during 5 min 10% iontophoresis] by the axon reflex was $1.45{\pm}0.53\;mg/cm^2$ and $0.98{\pm}0.24\;mg/cm^2$ before acclimatization in July and after acclimatization in September, respectively (p<0.001). The sweat volume of the AXR(2) [during 5 min post-iontophoresis] by the axon reflex was $2.06{\pm}0.24\;mg/cm^2$ and $1.39{\pm}0.32\;mg/cm^2$ before and after acclimatization in July and September, respectively (p<0.001). The sweat volume of the DIR was $5.88{\pm}1.33\;mg/cm^2$ and $4.98{\pm}0.94\;mg/cm^2$ before and after acclimatization in July and September, respectively (p<0.01). These findings suggest that lower peripheral sudomotor responses of the ACh receptors are indicative of a blunted sympathetic nerve response to ACh during exposure to hot summer weather conditions.

Economical Sweating Function in Africans: Quantitative Sudomotor Axon Reflex Test

  • Lee, Jeong-Beom;Bae, Jun-Sang;Choi, Jeong-Hwan;Ham, Joo-Hyun;Min, Young-Ki;Yang, Hun-Mo;Kazuhiro, Shimizu;Matsumoto, Takaaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • People in tropics have the ability to tolerate heat by residential permanence in the tropics. Previously, we have shown that African and Thai subjects who lived for whole their lives in only their respective countries sweat less under hot conditions than South Koreans who also lived whole their lives in Korea. The difference in sweating responses was attributed to the dissimilar central and peripheral sweating mechanisms operating in people from both groups. In the present study, acetylcholine (ACh), the primary transmitter for the sudomotor functions, was iontophoretically administered to South Koreans and Africans to determine the characteristic sudorific responses of their acclimatized biologic make-up to their respective environments. Using quantitative sudomotor axon reflex test (QSART), direct (DIR) and axon reflex (AXR) responses were evaluated. The findings revealed that the sweat onset-time among South Koreans was 0.91 min earlier than among Africans (P<0.01). The axon reflex sweat volume of nicotine receptor activity AXR(1) and sweat volume of muscarinic receptor activity DIR(2) among South Koreans were 79% and 53% greater (P<0.01), respectively. These results indicate that the reduced thermal sweating among Africans is at least in part attributed to the diminished sensitivity of sweat glands to ACh.

Quantitative sudomotor axon reflex test (QSART) as a diagnostic tool of small fiber neuropathy

  • Suh, Bum Chun
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Small fiber neuropathy is a painful neuropathy that cannot be assessed using nerve conduction studies. A skin biopsy and quantitative sensory testing (QST) are the gold standards for small fiber neuropathy diagnosis. However, a skin biopsy is invasive and commercially unavailable in Korea. QST is a method involving a thermal threshold, but its results can be affected by cognition as well as lesions of the central nervous system. Quantitative sudomotor axon reflex test (QSART) is a quantitative method of assessing sweat glands innervated by small fibers. In this review, we assessed the utility of QSART in evaluating small fiber neuropathy.

Effect of the Heat-exposure on Peripheral Sudomotor Activity Including the Density of Active Sweat Glands and Single Sweat Gland Output

  • Lee, Jeong-Beom;Kim, Tae-Wook;Shin, Young-Oh;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.273-278
    • /
    • 2010
  • Tropical inhabitants are able to tolerate heat through permanent residence in hot and often humid tropical climates. The goal of this study was to clarify the peripheral mechanisms involved in thermal sweating pre and post exposure (heat-acclimatization over 10 days) by studying the sweating responses to acetylcholine (ACh), a primary neurotransmitter of sudomotor activity, in healthy subjects (n=12). Ten percent ACh was administered on the inner forearm skin for iontophoresis. Quantitative sudomotor axon reflex testing, after iontophoresis (2 mA for 5 min) with ACH, was performed to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, as well as oral and skin temperature changes were measured. The post exposure activity had a short onset time (p<0.01), higher active sweat rate [(AXR (p<0.001) and DIR (p<0.001)], higher sweat output per gland (p<0.001) and higher transepidermal water loss (p<0.001) compared to the pre-exposure measurements. The activated sweat rate in the sudomotor activity increased the output for post-exposure compared to the pre-exposure measurements. The results suggested that post-exposure activity showed a higher active sweat gland output due to the combination of a higher AXR (DIR) sweat rate and a shorter onset time. Therefore, higher sudomotor responses to ACh receptors indicate accelerated sympathetic nerve responsiveness to ACh sensitivity by exposure to environmental conditions.

Impulse Trafficking in Neurons of the Mesencephalic Trigeminal Nucleus

  • Saito, Mitsuru;Kang, Young-Nam
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.113-118
    • /
    • 2006
  • In the primary sensory neuron of the mesencephalic trigeminal nucleus (MTN), the peripheral axon supplies a large number of annulospiral endings surrounding intrafusal fibers encapsulated in single muscle spindles while the central axon sends only a few number of synapses onto single ${\alpha}-motoneurons({\alpha}-MNs)$. Therefore, the ${\alpha}-{\gamma}$ linkage is thought to be very crucial in the jaw-closing movement. Spike activity in a ${\gamma}-motoneuron\;({\gamma}-MN)$ would induce a large number of impulses in single peripheral axons by activating many intrafusal fibers simultaneously, subsequently causing an activation of ${\alpha}-MNs$ in spite of the small number of synapses. Thus, the activity of ${\gamma}-MNs$ may be vital for modulation of jaw-closing movements. Independently of such a spindle activity modulated by ${\gamma}-MNs$, somatic depolarization in MTN neurons is known to trigger the oscillatory spike activity. Nevertheless, the trafficking of these spikes arising from the two distinct sources of MTN neurons is not well understood. In this short review, switching among multiple functional modes of MTN neurons is discussed. Subsequently, it will be discussed which mode can support the ${\alpha}-{\gamma}$ linkage. In our most recent study, simultaneous patch-clamp recordings from the soma and axon hillock revealed a spike-back-propagation from the spike-initiation site in the stem axon to the soma in response to a somatic current pulse. The persistent $Na^+$ current was found to be responsible for the spike-initiation in the stem axon, the activation threshold of which was lower than those of soma spikes. Somatic inputs or impulses arising from the sensory ending, whichever trigger spikes in the stem axon first, would be forwarded through the central axon to the target synapse. We also demonstrated that at hyperpolarized membrane potentials, 4-AP-sensitive $K^+$ current ($IK_{4-AP}$) exerts two opposing effects on spikes depending on their origins; the suppression of spike initiation by increasing the apparent electrotonic distance between the soma and the spike-initiation site, and the facilitation of axonal spike invasion at higher frequencies by decreasing the spike duration and the refractory period. Through this mechanism, the spindle activity caused by ${\gamma}-MNs$ would be safely forwarded to ${\alpha}-MNs$. Thus, soma spikes shaped differentially by this $IK_{4-AP}$ depending on their origins would reflect which one of the two inputs was forwarded to the target synapses.

Neurological aspects of anhidrosis: differential diagnoses and diagnostic tools

  • Park, Kee Hong;Park, Ki-Jong
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Anhidrosis refers to the condition in which the body does not respond appropriately to thermal stimuli by sweating. Sweating plays an important role in maintaining the body temperature, and its absence should not be overlooked since an elevated body temperature can cause various symptoms, even leading to death when uncontrolled. The various neurological disorders that can induce anhidrosis make a detailed neurological evaluation essential. The medication history of the patient should also be checked because anhidrosis can be caused by various drugs. The tests available for evaluating sweating include the quantitative sudomotor axon reflex sweat test, thermoregulatory sweat test, sympathetic skin response, and electrochemical skin conductance. Pathological findings can also be checked directly in a skin biopsy. This review discusses the differential diagnosis and evaluation of anhidrosis.

Neural Mechanism in Bronchial Asthma (기관지천식에서의 신경적 기전)

  • Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.73-86
    • /
    • 1994
  • In addition to classic cholinergic and adrenergic pathways, the existence of a third division of autonomic control in the human airways has been proved. It is called a nonadrenergic noncholinergic(NANC) nervous system, and difficult to study in the absence of specific blockers. Neuropeptides are certainly suggested to be transmitters of this NANC nervous system. It is very frustrating to understand the pathophysiologic role of these peptides in the absence of any specific antagonists. However, further studies of neuropeptides might eventually lead to novel forms of treatment for bronchial asthma. Another study of the interaction between different components of the autonomic nervous system, either in ganglionic neurotransmission or by presynaptic modulation of neurotransmitters at the end-organ will elute neural control in airway disease, particularly in asthma. Studies of how autonomic control may be disordered in airway disease should lead to improvements in clinical management. Epithelial damage due to airway inflammation in asthma may induce bronchial hyperresponsiveness. Axon reflex mechanism is one of possible mechanisms in bronchial hyperresponsiveness. Epithelial damage may expose sensory nerve terminals and C-fiber nrve endings are stimulated by inflammatory mediators. Bi-directional communication between the nerves and mast cells may have important roles in allergic process. The psychological factors and conditioning of allergic reactions is suggested that mast cell activation might be partly regulated by the central nervous system via the peripheral nerves. Studies in animal models, in huamn airways in vitro and in patients with airway disease will uncover the interaction between allergic disease processes and psychologic factors or neural mechainsms.

  • PDF

Clinical and autonomic characteristics in patients with postural tachycardia syndrome (기립빈맥증후군 환자의 임상적 및 자율신경 특성)

  • Kim, Duk Ju;Kang, Sa-Yoon;Kim, Joong Goo
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.96-100
    • /
    • 2019
  • Postural tachycardia syndrome (POTS) is common, although not so well-known variant of cardiovascular autonomic disorder characterized by an excessive heart rate increase on standing. POTS is probably underdiagnosed due to the heterogeneity in both presentation and etiology. This study aimed to evaluate the clinical and autonomic features in patients with POTS. We reviewed the medical records of patients with POTS. Medical records include onset age, sex, presenting symptoms, body mass index (BMI) and prognosis. All patients had an autonomic function and laboratory tests. Ninety-nine patients met the inclusion criteria for POTS (51.5% male; mean±SD age, 20.0±9.7 years; mean±SD, BMI 21.9±3.9). Common presenting symptoms were a brief loss of consciousness, dizziness, blurred vision and headache. Autonomic function tests showed abnormal quantitative sudomotor axon reflex testing in 20 patients of 99 POTS patients. The abnormal post-ganglionic sympathetic sudomotor function is generally considered to reflect a neuropathic form of POTS. In treatments, 83 patients were treated by non-pharmacological management including lifestyle changes and 16 patients required the initiation of pharmacological therapies. Most patients with POTS showed a relatively favorable prognosis. POTS is a chronic disease with a substantial subset of patients recovering within a few years after the initial presentation. Future efforts should focus on better understanding of POTS pathophysiology and designing randomized controlled trials for the selection of more effective therapy.

Reference ranges for autonomic function tests in healthy korean adults

  • Park, Kee Hong;Kim, Byoung Joon;Kang, Sa-Yoon;Oh, Sun-Young;Sohn, Eun Hee;Song, Kyeong-jin;Shin, Jin-Hong;Kang, Kyoung Hwa;Cho, Eun Bin;Jeong, Heejeong;Lee, Hyung;Kim, Hyun Ah;Kim, Rock Bum;Park, Ki-Jong
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • Background: The standardized autonomic function test has become widely available. However, there are no reference data for this test for the Korean population. This study explored reference data for sudomotor and cardiovagal function tests for the Korean population. Methods: The sweat volume by quantitative sudomotor axon reflex test, heart-rate response to deep breathing (HRdb), expiration:inspiration (E:I) ratio, and Valsalva ratio (VR) were measured in 297 healthy Korean volunteers aged from 20 to 69 years. Multivariate regression analysis was performed to evaluate the effects of age, sex, and body mass index on these variables. The 2.5th, 5th, 10th, 90th, 95th, and 97.5th percentile values were obtained for each investigation. Results: The sweat volume was higher in males than in females. The HRdb and E:I ratio were negatively correlated with age, and were higher in males than in females. The VR was negatively correlated with age, but it was not correlated with sex. Conclusions: This study has provided data on the reference ranges for sudomotor and cardiovagal function tests in healthy Korean adults.