• Title/Summary/Keyword: Axon

Search Result 180, Processing Time 0.025 seconds

Ultrastructural Localization of GABAergic Neuronal Components in the Dog Basilar Pons (개의 교핵내 GABA성 신경세포 성분의 미세구조적 위치관찰)

  • Lee, Hyun-Sook
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.65-74
    • /
    • 1995
  • An immunocytochemical study of GABA-positive neuronal elements was performed at the electron microscopic level to examine subcellular distribution of the inhibitory neurotransmitter in the dog basilar pons. Electron-dense reaction product was observed in neuronal somata and dendritic processes. One or more unlabeled axon terminals made asymmetric synaptic contacts with these GABAergic somatic and dendritic profiles. A large number of GABA-positive axon terminals were also observed. They made symmetric as well as asymmetric synaptic contacts with unlabeled dendritic profiles. In axo-axonic synapses, postsynaptic axon-like processes were consistently GABA-immunoreactive. These observations suggest that the inhibitory local circuit neurons in the dog basilar pons play a major role in cerebro-ponto-cerebellar circuitry by integrating various afferent inputs and conveying them into the cerebellar cortex and the deep cerebellar nuclei.

  • PDF

Seasonal acclimation in sudomotor function evaluated by QSART in healthy humans

  • Shin, Young Oh;Lee, Jeong-Beom;Kim, Jeong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.499-505
    • /
    • 2016
  • The quantitative sudomotor axon reflex testing (QSART) is a classic test of routine postganglionic sudomotor function. We investigated sudomotor function by QSART after summer (July 2012) and winter (January 2013) seasonal acclimation (SA) in the Republic of Korea. QSART with acetylcholine (ACh) iontophoresis were performed to determine directly activated (DIR) and axon reflex-mediated (AXR1, 2) sweating rate. Onset time of axon reflex, activated sweat gland density (ASGD), activated sweat gland output (ASGO), tympanic and skin temperatures ($T_{ty}$, $T_{sk}$), basal metabolic rate (BMR), and evaporative loss volume changes were measured. Tympanic and mean body temperature (${\bar{T}}_b$; calculated from $T_{ty}$, $T_{sk}$) were significantly lower after summer-SA than that of winter-SA. Sweat onset time was delayed during winter-SA compared to that after summer-SA. BMR, AXR(1), AXR(2), and DIR sweat rates, ASGD and ASGO, and evaporative loss volume were significantly diminished after winter-SA relative to after summer-SA. In conclusion, changes in sweating activity measured by QSART confirmed the involvement of the peripheral nervous system in variation of sudomotor activity in seasonal acclimation.

A Study on the Propogation Velocity of Biological Action Potential (생체의 자극 전도속도에 관한 연구)

  • Che, Gyu-Shik;Kwon, Yong-Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.1002-1009
    • /
    • 2010
  • I made the axon to the electrical transmission model and then constructed electrical equivalent model using Kirhhoff's current law and voltage law in this paper. I calculated various axon parameters in order to analyze the electrical potential hehavior versus minute distance chang of axon. The transmission velocity of unmyelinated nerve is proportional to square root of axon diameter, while that of myelinated nerve is directly proportional to its diameter. Because the transmission of myelin sheath is independent of voltage unlike unmyelinated sheath, the Hodgkin-Huxley model across the membrane is not so precise.

Morphological Analysis of the Myelinated Parent Axons that Innervate Rat Upper Molar Pulps in the Trigeminal Ganglion

  • Paik, Sang Kyoo;Kim, Jong Ho;Kim, Tae Heon;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.175-182
    • /
    • 2015
  • Previous studies suggested that myelinated axons innervating rat molar pulps undergo morphological changes in their peripheral course. However, little information is available on the morphological feature of the parent axons at the site of origin. We therefore investigated the size of the myelinated parent axons and their morphological features at the proximal sensory root of the trigeminal ganglion by horseradish peroxidase (HRP) injection into rat upper molar pulps and subsequent light and electron microscopy. A total of 248 HRP-labeled myelinated axons investigated were highly variable in the size. Fiber area, fiber diameter, axon area (axoplasm area), axon diameter (axoplasm diameter), and myelin thickness were $11.32{\pm}8.36{\mu}m^2(0.80{\sim}53.17{\mu}m^2)$, $3.99{\pm}1.53{\mu}m(1.08{\sim}9.26{\mu}m)$, $8.70{\pm}6.30{\mu}m^2(0.70{\sim}41.83{\mu}m^2)$, $3.13{\pm}1.13{\mu}m(0.94{\sim}7.20{\mu}m)$ and $0.43{\pm}0.23{\mu}m(0.07{\sim}1.06{\mu}m)$, respectively. The g-ratio (axon diameter / fiber diameter) of the labeled axons was $0.79{\pm}0.05$ (0.61~0.91). Axon diameter was highly correlated with myelin thickness (correlation coefficients, r=0.83) but little correlated with g-ratio (r=-0.33) of individual myelinated parent axons. These results indicate that myelin thickness of the myelinated parent axons innervating rat molar pulps increase with increasing axon diameter, thus maintaining a constant g-ratio.

Heat Acclimatization in Hot Summer for Ten Weeks Suppress the Sensitivity of Sweating in Response to Iontophoretically-administered Acetylcholine

  • Lee, Jeong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.349-355
    • /
    • 2008
  • To determine the peripheral mechanisms involved in thermal sweating during the hot summers in July before acclimatization and after acclimatization in September, we evaluated the sweating response of healthy subjects (n=10) to acetylcholine (ACh), a primary neurotransmitter involved in peripheral sudomotor sensitivity. The quantitative sudomotor axon reflex test (QSART) measures sympathetic C fiber function after iontophoresed ACh evokes a measurable reliable sweat response. The QSART, at 2 mA for 5 min with 10% ACh, was applied to determine the directly activated (DIR) and axon reflex-mediated (AXR) sweating responses during ACh iontophoresis. The AXR sweat onset-time by the axon reflex was $1.50{\pm}0.32$ min and $1.84{\pm}0.46$ min before acclimatization in July and after acclimatization in September, respectively (p<0.01). The sweat volume of the AXR(l) [during 5 min 10% iontophoresis] by the axon reflex was $1.45{\pm}0.53\;mg/cm^2$ and $0.98{\pm}0.24\;mg/cm^2$ before acclimatization in July and after acclimatization in September, respectively (p<0.001). The sweat volume of the AXR(2) [during 5 min post-iontophoresis] by the axon reflex was $2.06{\pm}0.24\;mg/cm^2$ and $1.39{\pm}0.32\;mg/cm^2$ before and after acclimatization in July and September, respectively (p<0.001). The sweat volume of the DIR was $5.88{\pm}1.33\;mg/cm^2$ and $4.98{\pm}0.94\;mg/cm^2$ before and after acclimatization in July and September, respectively (p<0.01). These findings suggest that lower peripheral sudomotor responses of the ACh receptors are indicative of a blunted sympathetic nerve response to ACh during exposure to hot summer weather conditions.

Economical Sweating Function in Africans: Quantitative Sudomotor Axon Reflex Test

  • Lee, Jeong-Beom;Bae, Jun-Sang;Choi, Jeong-Hwan;Ham, Joo-Hyun;Min, Young-Ki;Yang, Hun-Mo;Kazuhiro, Shimizu;Matsumoto, Takaaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • People in tropics have the ability to tolerate heat by residential permanence in the tropics. Previously, we have shown that African and Thai subjects who lived for whole their lives in only their respective countries sweat less under hot conditions than South Koreans who also lived whole their lives in Korea. The difference in sweating responses was attributed to the dissimilar central and peripheral sweating mechanisms operating in people from both groups. In the present study, acetylcholine (ACh), the primary transmitter for the sudomotor functions, was iontophoretically administered to South Koreans and Africans to determine the characteristic sudorific responses of their acclimatized biologic make-up to their respective environments. Using quantitative sudomotor axon reflex test (QSART), direct (DIR) and axon reflex (AXR) responses were evaluated. The findings revealed that the sweat onset-time among South Koreans was 0.91 min earlier than among Africans (P<0.01). The axon reflex sweat volume of nicotine receptor activity AXR(1) and sweat volume of muscarinic receptor activity DIR(2) among South Koreans were 79% and 53% greater (P<0.01), respectively. These results indicate that the reduced thermal sweating among Africans is at least in part attributed to the diminished sensitivity of sweat glands to ACh.

Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis

  • Choi, Boyoon;Kim, Hyeyoung;Jang, Jungim;Park, Sihyeon;Jung, Hosung
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.846-854
    • /
    • 2022
  • Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.

Quantitative sudomotor axon reflex test (QSART) as a diagnostic tool of small fiber neuropathy

  • Suh, Bum Chun
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Small fiber neuropathy is a painful neuropathy that cannot be assessed using nerve conduction studies. A skin biopsy and quantitative sensory testing (QST) are the gold standards for small fiber neuropathy diagnosis. However, a skin biopsy is invasive and commercially unavailable in Korea. QST is a method involving a thermal threshold, but its results can be affected by cognition as well as lesions of the central nervous system. Quantitative sudomotor axon reflex test (QSART) is a quantitative method of assessing sweat glands innervated by small fibers. In this review, we assessed the utility of QSART in evaluating small fiber neuropathy.

An Automated Technique for Detecting Axon Structure in Time-Lapse Neural Image Sequence (시간 경과 신경계 영상 시퀀스에서의 축삭돌기 추출 기법)

  • Kim, Nak Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • The purpose of the neural image analysis is to trace the velocities and the directions of moving mitochondria migrating through axons. This paper proposes an automated technique for detecting axon structure. Previously, the detection process has been carried out using a partially automated technique combined with some human intervention. In our algorithm, a consolidated image is built by taking the maximum intensity value on the all image frames at each pixel Axon detection is performed through vessel enhancement filtering followed by a peak detection procedure. In order to remove errors contained in ridge points, a filtering process is devised using a local reliability measure. Experiments have been performed using real neural image sequences and ground truth data extracted manually. It has been turned out that the proposed algorithm results in high detection rate and precision.