• Title/Summary/Keyword: Axial-type rotor

Search Result 97, Processing Time 0.024 seconds

An Experimental Study of 3-D Axial Type Turbine Performance with Various Axial Gaps between the Rotor and Stator (축류형 터빈에서 정${\cdot}$동익 축방향 거리의 변화에 대한 실험적 연구)

  • Kim Jong-Ho;Kim Eun-Jong;Cho Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.541-544
    • /
    • 2002
  • The turbine performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3/min\;at\;290mmAq$ static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to two times of stator axial chord length, and performance curves are obtained with 7 different axial gaps. The efficiency is dropped about $5{\%}$ of its highest value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.0-1.5Cx.

  • PDF

An Axial-type Self-bearing Motor for Small Vertical Axial-flow Pump (소형 수직형 축류 펌프를 위한 축방향 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.223-232
    • /
    • 2001
  • Aiming at a small axial pump with a levitated rotor, an axial-type self-bearing motor is presented, which has a rotor wish four permanent magnets and two stators with two-pole three-phase windings. In this system, only the axial motion of rotor is actively controlled by two opposite self-bearing motors just like in the case of an axial magnetic bearing, while the other motions are passively stable. For rotation, It follows the theory of a four-pole three-phase synchronous motor. This paper Introduces schemes for design and control of the self-bearing motor and shows some experimental results to Prove the feasibility of application for the axial Pump.

  • PDF

An Experimental Study of Partial Admitted Flow Characteristics on a Small Axial-Type Turbine (소형축류형 터빈에서의 부분분사 유동특성에 관한 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.28-37
    • /
    • 2004
  • An experimental study is conducted to investigate flow characteristics on a small axial-type turbine which is applied as the rotating part of air tools. It operates in a partial admission due to consumption restriction of the high pressure air. In this operating condition, it is necessary to understand flow characteristics for obtaining the high specific output power. Tested turbine consists of two stages and the mean radius of flow passage is less than 10mm. A 6 bar pressure air is used to operate the turbine. The experimental results show that flow angles depend on the measuring location along the circumferential direction, but its discrepancy is alleviated along the axial direction. Absolute flow velocities show three times difference according to the measuring location at the exit of the first rotor due to the partial admission, but they show similar value at the exit of the second rotor by the velocity diffusion. From the measured flow angles and velocities, a ratio of output power obtained by the first and second rotor is estimated. It shows that the output power obtained by the second rotor is about $11\%$ to that by the first rotor at 60,000 RPM. It is effective therefore to improve the first rotor for increasing the turbine output power.

A Study of Sensorless Driving for The Axial Type Double Rotor Brushless DC Motor (축방향 이중 회전자 브러시리스 직류 전동기의 센서리스 구동에 관한 연구)

  • Won, Jae-Son;Kang, Tae-Sam;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.168-170
    • /
    • 1998
  • In this paper a driving method using the microcomputer in safe driving the axial type double rotor brushless DC motor without shaft position sensor is studied. The rotor position is determined from the back-EMF passed though special filter. Starting technique which uses the motor as a synchronous motor at standstill are explained. The motor speed is controlled by changing the duty cycle of PWM. The test motor has Y-connected three-phase stator and 8-pole axial type double rotor. From the experiments, we got good performences of the proposed control system.

  • PDF

A Study on the Flow Characteristics in Axial Flow Rotors with Varying Tip Clearance (축류회전차에서 팁간극의 변화를 고려한 유동특성에 관한 연구)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.353-361
    • /
    • 2002
  • The tip leakage flow passing through the clearance between rotor blade tip and casing shroud has been known to occupy an important portion of the rotor overall loss. In this study, flow characteristics in axial flow rotors with different tip clearances is investigated by experimental and numerical methods. The experimental study was carried out to measure static pressure and velocity profiles at the real rotating test rig. The axial flow rotors used for the experiments have ten blades and three different rotor diameter. The tip clearance heights are 1mm, 3mm, and 4.5mm. Measurements were done using spherical type five-hole probe by non-nulling method. The numerical study was carried out to calculate pressure distributions and velocity vectors at the same condition as the experiments in the flow fields of axial flow rotors using Phoenics code.

Design of Salient Pole Rotor Type Single Phase SRM

  • Oh, Young-Woong;Lee, Eun-Woong;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.9-14
    • /
    • 2001
  • Because salient pole rotor type single phase SRM(Switched Reluctance Motor) has a simple structure and can be use both radial and axial direction magnetic flux at the same time, its output power per unit volume is high. Therefore, the shaft length can be minimized when compared with same output motors. However, salient pole rotor is hard to design due to its complex magnetic circuit. In this paper, salient pole rotor type single phase SRM with minimized shaft length is designed and selected the most suitable dimension of rotor, stator, pole arc and salient pole.

A Study of the One-Stage Axial Turbine Performance with Various Axial Gap Distances between the Stator and Rotor (정.동익 축방향 간격에 따른 단단 축류터빈의 성능시험에 관한 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.99-105
    • /
    • 2002
  • The performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3$/min at 290mmAq static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to three times of stator axial chord length, and performance curves are obtained with 9 different axial gaps. The efficiency varies about 8% of its peak value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.6-1.9Cx.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

Modeling of Deviation Angle and Pressure Loss due to Rotor Tip Leakage Flow in Axial Turbines (축류터빈의 동익에서 끝간격 누설유동에 의한 편향각과 압력손실의 모형화)

  • 윤의수;오군섭;정명균
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.13-13
    • /
    • 1998
  • A simple model of the tip leakage flow models of the rotor downstream flow is developed, based on Lakshminarayana's theoretical concept on the tip clearance flow and the experimental data published in open literature. And new spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a through flow analysis. Combining these new models and previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

  • PDF

Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines (축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형)

  • Yoon, Eui Soo;Park, Moo Ryong;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.