• Title/Summary/Keyword: Axial-Flow Fans

Search Result 67, Processing Time 0.032 seconds

A Study on the Effect of Sweep Angle of Axial Fan on Its Noise (축류송풍기의 스윕각이 소음에 미치는 영향에 대한 연구)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.365-370
    • /
    • 2000
  • A computational study on the effect of sweep angle of axial fan on its noise is performed in the present paper. The forward swept axial fan was designed by numerical optimization method incorporated with three dimensional flow analysis. The objective function was defined by the ratio of generation rate of turbulent kinetic energy to pressure head. And, two variables related with sweep angle distribution are used for design variables. The swept fan has better performance characteristics and noise level. The experimental result shows that spectrums of no-sweet and swept fans have differences in the blade passage frequency, especially in the broadband. And the overall noise level of swept fan is lower 10dB(A) than that of no-sweep fan. For the comparison of flow fields between no-sweep fan and swept fan, CFX-TASCflow computational fluid dynamics software is used. Standard k-${\varepsilon}$ model is used for the turbulence model. Distributions of pressure and turbulent kinetic energy distributions are compared in order to find what happen in the low-noise swept fan.

  • PDF

Effects of a Guide Fin Blade on the Flow Characteristics in a Ventilating Axial Fan (환기용 축류팬의 가이드핀 블레이드 형상변화에 따른 유동특성에 관한 연구)

  • Park, Hong-Kwang;Lee, Jee-Keun;Rho, Byung-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.874-882
    • /
    • 2007
  • The effects of a guide fin blade on the flow characteristics in a ventilating axial fan were investigated experimentally. The guide fins were setup onto the pressure surface of the blade, and their effects on the flowrate were evaluated. Two types of the guide fin blade were designed. One is the stem fin blade, and the other is the radial fin blade. The stem fin is designed normal to the circumference of a circle, and the radial fin is designed along the circumference of a circle. The results from the guide fin blade fans are compared with that of the blade without guide fins. The position and the geometry of the radial fin setting up on the blade have an effect on the increase of flowrate with the minor sacrifice of rotational speed of the blades. The radial fin positioning at 0.84 times blade diameter shows highest performance in the flowrate. The increase of the blade weight resulting from applying the guide fins shows minor effect on the variation of rotational speed of the blades.

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

Study on the Development for Low Noise Indoor and Outdoor Package Air-Conditioner (저소음 패키지 에어컨 실내외기 개발에 관한 연구)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1913-1920
    • /
    • 1996
  • The purpose of this study was to reduce the airborne noise emitted from the package air-conditioner(PAC) therefore, the optimim design melthods of the fans and the flow-paths were investigated experimentally through the anlaysis of the nose problems caused by the conventional PAC system, and the fan performance tests and the systme resistance measurements of the parts which belong to the flow-paths of the PACwere used to study these noise problems. As a results, through the optimized flow-paths of the new PAC system with the lowset system resistance, and by adjusting and matching the operating point of each fan to each PAC system, the airborne noise reductions from the new indoor PAC and the outdoor one were achieved upto 5.5 dBA and 6.6 dBA respectively in overall noise level as compared with the conventional PAC system.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

A Study on the Design Technique of the Cooling Tower Fan with Sweep (스윕을 가진 냉각탑용 쿨링팬의 설계기술 개발에 관한 연구)

  • Oh, Keon-Je
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.307-313
    • /
    • 2003
  • A technique for the design of cooling tower fans with sweep is presented. This technique is developed using the equations for the one dimensional inviscid flow through the fan blade, the empirical equations, and the experimental correlations. A parabolic function is used to generate a sweep of the fan. Design data for the fan and the balde can be obtained for a given flow rate and a pressure rise. Also, the present method is used to construct the three dimensional model for the designed fan. Design data and the model show general characteristics of the axial propeller fan.

  • PDF

A Study on the Flow and Cooling Characteristics with the Inlet Blockage of a Fan-Sink (홴싱크의 입구 봉쇄에 따른 유동 및 냉각 특성에 관한 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Yun, Jae-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.83-88
    • /
    • 2004
  • In this study, the flow and thermal performance of the heat sink and fan-sink were experimentally studied to predict the operating condition of the fan-sink. The experiments of the flow and thermal resistance of the heat sink with various inlet blockage, which were occurred by the shapes of the axial fans, were conducted for the proof of the effects of the inlet blockages. The greater the inlet blockage of the heat sink, the higher the pressure drop and lower the thermal resistance of the heat sink will be. The operating point of the fan-sink was predicted by the pressure drop curve with the inlet blockage, which was corresponded to the selected fan and the fan performance curve, and verified by the performance test of the fan-sink. The predicted operating point of the fan-sink had good agreement with the result of the performance test of the fan-sink within $0.7\%$ of the volume flow rates. Measured thermal resistance of the fan-sink was equivalent to that of the heat sink with the same inlet blockage of the fan-sink. It was shown that the heat transfer characteristics of the heat sink were influenced by the flow interaction between the selected fan and the heat sink. To improve the thermal resistance of the heat sink, it is necessary to consider appropriate flow patterns of the fan outlet entering into the heat sink.

  • PDF

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

A Design Method for Cascades Consisting of Circular Arc Blades with Constant Thickness

  • Bian, Tao;Han, Qianpeng;Bohle, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2017
  • Many axial fans have circular arc blades with constant thickness. It is still a challenging task to calculate their performance, i.e. to predict how large their pressure rise and pressure losses are. For this task a need for cascade data exists. Therefore, the designer needs a method which works quickly for design purposes. In the present contribution a design method for such cascades consisting of circular arc blades with constant thickness is described. It is based on a singularity method which is combined with a CFD-data-based flow loss model. The flow loss model uses CFD-data to predict the total pressure losses. An interpolation method for the CFD-data are applied and described in detail. Data of measurements are used to validate the CFD-data and parameter variations are conducted. The parameter variations include the variation of the camber angle, pitch chord ratio and the Reynolds number. Additionally, flow patterns of two dimensional cascades consisting of circular arc blades with constant thickness are shown.

THE OPERATING CHARACTERISTICS IN AN AIR-BREATHING POLYMER ELECTROLYTE FUEL CELL (공기 호흡형 고분자 전해질 연료전지 제작 및 발전 특성 연구)

  • SOHN Young-Jun;PARK Gu-Gon;UM Sukkee;YIM Sung-Dae;Yang Tae-Hyun;YOON Young-Gi;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.277-280
    • /
    • 2005
  • Air-breathing polymer electrolyte membrane fuel cells (PEMFC) are highly promising particularly for small-power applications up to tens watts class. A distinctive feature of the air-breathing PEMFC is its simple system configuration in which axial fans operate for dual purposes, supplying both oxidant and coolant in a single manner. In the present study, a nominal SOW air-breathing PEMFC system is developed and investigated to determine the optimal operating strategy through parametric studies (i.e., reactant humidity, and fan-blowing flow rate). The cell voltage distributions are examined as a function of time to evaluate the system performance under various operating conditions.

  • PDF