• 제목/요약/키워드: Axial velocity

검색결과 749건 처리시간 0.026초

Dynamic PIV Measurement of Swirl Flow in a PC Fan

  • ARAMAKI Shinichiro;HAYAMI Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.41-45
    • /
    • 2004
  • The dynamic particle image velocimetry (PIV) is consisted of a high frequency pulse laser, high speed cameras and a timing controller. The three velocity components of flow downstream of an axial flow fan for PC cooling system are measured using the dynamic PIV system. An Axial flow fan has seven blades of 72 mm in diameter. The rotating speed is 1800 rpm. The downstream flow is visualized by smoke particles of about $0.3-1\;{\mu}m$ in diameter. The three-dimensional instantaneous velocity fields are measured at three downstream planes. The swirl velocity component was diffused downstream and the change in time-mean vorticity distribution downstream was also discussed. The spatio-temporal change in axial velocity component with the blades passing is recognized by the instantaneous vector maps. And the dynamic behavior of vorticity moving with the rotating blades is discussed using the unsteady vorticity maps.

  • PDF

엇회전식 축류 펜의 공력 특성에 관한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Flow Fan)

  • 최진용;조이상;조진수;원유필
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.201-210
    • /
    • 2002
  • Experiments were done for performance and flow characteristics of a counter-rotating axial flow fan. Performance curves of a counter-rotating axial flow fan were obtained and compared by varying the blade pitch angles. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe and a slanted hot-wire. The velocity profiles between the hub and tip of the fans were measured and analyzed at the peak efficiency point. The peak efficiency of the counter-rotating axial flow fan was improved about 15% respectively, compared with the single rotating axial fan. The single rotating axial flow fan showed relatively law efficiency due to the swirl velocities behind rotor exit which produced pressure losses. The counter-rotating axial flow fan showed that the swirl velocity generated by the front rotor was eliminated by the rear rotor and the associated dynamic pressure is recovered in the from of the static pressure rise.

와류형 고압 분무의 속도 및 입경분포에 관한 연구 (A Study on the Distribution of Droplet Velocity and Diameter in a High-Pressure Swirl Spray)

  • 최동석;류경훈;차건종;김덕줄
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1310-1319
    • /
    • 1999
  • High-pressure swirl injectors have usually been employed in Gasoline direct injection engines due to their spray characteristics and the feasibility of their control. Thus the microscopic characteristics of high-pressure swirl spray were investigated by PDA. The correlation between axial and radial velocities and the correlation between droplet size and axial velocity were examined with different axial and radial positions. Two dimensional droplet velocity and its number distribution with size-classified droplets were illustrated. The mean droplet velocity and its SMD were also analyzed at the center of spray, the position having maximum mean axial velocity, and the spray periphery using time dividing method. Finally, the structure of high-pressure swirl spray was presented with the size distribution and velocity profile of droplets.

CFD를 활용한 축류형 혈액펌프의 펌프 특성 해석 (Pump performance analysis of Axial Flow Blood Pump using CFD)

  • 최승한;김동욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.288-290
    • /
    • 2003
  • Artificial heart is divided by pulsation flow type and continuous flow type according to blood circulation pattern. Axial flow blood pump is a kind of continuous flow type artificial heart. Axial flow blood pump would be different pump performance according to impeller's shape and rotating velocity. Pump performance be able to compare by flow rate according to differential pressure and Impeller's rotating velocity. It confirms Impeller model of better efficiency according to compare Pump performance of axial flow blood pump using CFD with actual experiment result.

  • PDF

엇회전식 축류팬의 3차원 비정상 유동에 관한 실험적 연구 (Experimental Study on the Three Dimensional Unsteady Flow in a Counter-Rotating Axial Flow Fan)

  • 박현수;조이상;조진수
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1005-1014
    • /
    • 2004
  • Experiments were done for the three dimensional unsteady flow in a counter-rotating axial flow fan under peak efficiency operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the 45$^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. It has been found that the radial and tangential velocity components disappeared, while the axial velocity component highly increased as soon as the tip vortex was generated. It has been observed that secondary flow and turbulence intensity which were increased by the front rotor were dissipated passing through the rear rotor. As the result the energy loss of the counter rotating axial flow fan decreased at the downstream of rear rotor. Also, it has been verified that tip vortex pattern of the rear rotor was dampened because the tip vortex generated by front rotor was mixed with that of the rear rotor.

소형 축류홴의 난류유동 특성치에 대한 LDA 측정 (LDA Measurements on the Turbulent Flow Characteristics of a Small-Sized Axial Fan)

  • 김장권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.371-376
    • /
    • 2001
  • The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as $\varphi=0.1$, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except $\varphi=0.1$ and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at $\varphi=0.1$ show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  • PDF

진동하는 Taylor-Couette 유동에 대한 수치적 연구 (NUMERICAL STUDY OF MODULATED TAYLOR-COUETTE FLOW)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we consider Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the mean angular velocity, amplitude and frequency of the oscillation, we investigate the characteristics of modulated Taylor vortices. At a constant mean angular velocity, Taylor vortices intensify as the amplitude increases and frequency decreases. The axial wavenumber is calculated by spectral analysis. When the frequency varies, the axial wavenumber does not change at a constant mean angular velocity and amplitude. But, the axial wavenumber increases, as the mean angular velocity increases.

곡관덕트에서 LDV를 이용한 천이정상유동의 유동특성에 관한 연구(I) (A Study on the Flow Characteristics of Developing Transitional Steady Flows in a Curved Duct by Using Laser Doppler Velocimeter (I))

  • 봉태근;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.96-101
    • /
    • 2000
  • In this paper, an experimental investigation of characteristics of developing transitional steady flows in a square-sectional 180 urved duct is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. The flow development is found to depend upon Dean number and curvature ratio. For transitional steady flows, the maximum velocity position of axial velocity profiles begins to incline toward the outer wall from $\phi$=$30^{\circ}$bended angle, velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

  • PDF

원심형 보조날개를 부착한 축류홴의 유동특성에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics of Axial Flow Fan with Centrifugal Sub-Blade)

  • 이석종;성재용;이명호
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.19-25
    • /
    • 2013
  • A new type axial flow fan with centrifugal sub-blades has been designed and fabricated in the present study. We investigated velocity and pressure distributions in downstream flow fields of the fan experimentally to detect the detailed flow characteristics of new axial flow fan and an existing axial flow fan. Two-dimensional velocity components were probed by applying a particle image velocimetry system and pressure distributions were measured by Pitot tube and micro-manometer. Our results show that the velocity and pressure distributions at the flow fields of the new fan are quite different from the existing fan, and that the centrifugal sub-blades in the new fan can improve the performance characteristics in view of kinetic energy.

유량에 따른 축류홴의 익단누설와류 및 후류 특성 (Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 김광용;장춘만
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.