• Title/Summary/Keyword: Axial turbine

Search Result 255, Processing Time 0.036 seconds

Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine (부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구)

  • Cho Chong-Hyun;Choi Sang-Kyu;Cho Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.13-19
    • /
    • 2006
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

Turbine Performance Degradation due to Blade Surface Roughness (블레이드 표면 거칠기에 따른 터빈 성능저하)

  • Park, Il-Young;Yun, Yong-Il;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2012-2017
    • /
    • 2003
  • This paper reports on the influence of blade surface roughness on turbine efficiency. The performance of a low speed one-stage axial turbine with roughened blade surfaces was evaluated. Sandpaper with equivalent sandgrain roughness ($k_s$) was used to roughen the blades. Efficiency (${\eta}/{\eta}_0$) decreases by 4.5 % with sandgrain size of 400 ${\mu}m$ on the stator suction surface.

  • PDF

A Study on the Through-Flow Analysis for a Multi-Stage Axial Turbine Considering Leakage Flows (누설 유동을 고려한 다단 축류 터빈의 유선곡률해석법에 대한 연구)

  • Kim, Sangjo;Kim, Kuisoon;Son, Changmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • The streamline curvature method is essentially used for the design procedure of multi-stage axial turbines. Moreover, by using this method, it is possible to consider the turbine loss characteristics for real operating conditions at an early design stage. However, there is not enough relevant research in South Korea to support this. In the present study, the streamline curvature method and the empirical equation for calculating the mixing loss are employed to predict the performance of a multi-stage axial turbine with leakage flows. The proposed method is applied to the prediction of the performance of a five-stage axial turbine with leakage flows, as used for an industrial gas turbine of 86 MW in South Korea. The calculation result is compared with 3D CFD data, and the advantages and limitations of the streamline curvature method are described.

A Numerical Analysis of the Partial Admission Supersonic Turbine Losses for Geometic Conditions (형상 변수에 따른 부분 흡입형 초음속 터빈 손실에 관한 수치적 연구)

  • Shin Bong-Gun;Im Kang-Soo;Kim Kui-Soon;Jeong Eun-Hwan;Park Pyun-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.297-305
    • /
    • 2006
  • In this paper, numerical analyses of the flow within turbine for geometric conditions such as nozzle shape, length of axial clearance, and chamfer angle of leading edge of blade have been performed to investigate the partial admission supersonic turbine losses. Firstly, flow's bending occurred at axial clearance is depended on nozzle shape. Next, the chamfer angle of leading edge affects the strength of shock generated at the leading edge. Finally the expansion and mixsing of the flow within axial clearance are largely depended upon the length of axial clearance. Therefore it is found that aerodynamic losses of turbine is affected by nozzle shape and chamfer angel and that partial admission losses is depended on nozzle shape and the length of axial clearance.

  • PDF

Off-Design Performance Prediction of a Gas Turbine Engine (가스터빈 기관의 탈설계점 해석)

  • Kang, D.J.;Ryu, J.W.;Jung, P.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1851-1863
    • /
    • 1993
  • A procedure for the prediction of the off-design performance of a gas turbine engine is proposed. The system performance at off-design speed is predicted by coupling the thermodynamic models of a compressor and a turbine. The off-design performance of a compressor is obtained using the stage-stackimg method, while the Ainlay-Mathieson method is used for a turbine. The procedure is applied to a single-shaft gas turbine and its predictability is found satisfactory. The results also show that the net work output increases with the increase of the turbine inlet temperature, while the thermal efficiency is marginal. The maximum thermal efficiency at design point is obtained between the highest pressure ratio and design pressure ratio.

Analysis of Axial Compressor Design Characteristics in Large Class Gas Turbine for Power Generation (발전용 대형 가스터빈 축류압축기 설계 특성 분석)

  • Lee, Sung-Ryong;Song, Jae-Wook;Kim, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.64-69
    • /
    • 2012
  • Currently axial flow compressor is used primarily in a large power generation gas turbine. In this paper,the main factors to be considered when designing a axial flow compressor were compared to those of a small power generation gas turbine(DGT-5). The main design parameters was examined in the aspect ratio, solidity, as well as reaction, diffusion factor, incidence angle, etc. The results in case of a small compressor are showed a regular pattern but there were not found any specific design patterns for a large class compressor.

Performance Characteristics of an Axial Propeller Small-hydro Turbine with Various Cambers of Runner Blade (캠버각 변화에 따른 소수력 축류 프로펠러 수차의 유동 특성 연구)

  • Byeon, Sun-Seok;Kim, Tae-Youn;Han, Sang-Meok;Kim, Jeong-Hwan;Kim, Youn-Jea
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.44-51
    • /
    • 2012
  • The aim of this paper is to examine the hydraulically optimized camber of a blade. Prior studies have tried to determine the sound method of design on small-hydro turbines. These have appeared to realize a reasonably efficient small-hydro turbine. Nonetheless, specific and accurate design data have not as yet been established for the shape of the runner blade. Hence, this study examines the performance characteristic of an axial propeller turbine with 0~8% camber variations. The results of output power, efficiency, and pressure distribution of the turbine are graphically depicted. The definition of camber refers to the NACA airfoil. The commercial finite element analysis (FEA) packages, ANSYS, and CFX are used in this study. The results revealed the performance characteristics on small-hydro turbine and suggested a highly efficient section shape of the runner.

A Study of the Second Stage Effect on a Partially Admitted Small Turbine (부분분사에서 작동하는 소형터빈에서 두 번째 단의 효과에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Choi, Sang-Kyu;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.898-906
    • /
    • 2008
  • A tested turbine consists of two stages, and an axial-type and a radial-type turbine are applied to the first and second stage, respectively. The mean diameter of the axial-type turbine rotor is 70 mm, and the outer diameter of the radial-type turbine is 68mm at the inlet. In this experiment, an axial-type turbine, two different radial-type turbines, and three different nozzle flow angles are applied to find the optimal design parameters. To compare the turbine performance, the net specific output torque is evaluated. The test results show that the nozzle flow angle on the first stage is a more important parameter than other design parameters for partially admitted small turbines to obtain high operating torque. For a 3.4% partial admission rate, the net specific output torque is increased by 13% with the addition of a radial-type rotor to the second stage when the turbine operates at $75^{\circ}$ nozzle flow angle.

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings (노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Choi, Byoung-ik;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.

Cogging Torque Reduction in AFPM Generator Design for Small Wind Turbines (소형 풍력발전기용 AFPM 발전기 코깅토크 저감 설계)

  • Chung, Dae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1820-1827
    • /
    • 2012
  • This paper is to present a new method of cogging torque reduction for axial flux PM machines of multiple rotor surface mounted magnets. In order to start softly and to run a power generator even the case of weak wind power, reduction of cogging torque is one of the most important issues for a small wind turbine, Cogging torque is an inherent characteristic of PM machines and is caused by the geometry shape of the machine. Several methods have been already applied for reducing the cogging torque of conventional radial flux PM machines. Even though some of these techniques can be also applied to axial flux machines, manufacturing cost is especially higher due to the unique construction of the axial flux machine stator. Consequently, a simpler and low cost method is proposed to apply on axial flux PM machines. This new method is actually applied to a generator of 1.0kW, 16-poles axial flux surface magnet disc type machine with double-rotor-single-stator for small wind turbine. Design optimization of the adjacent magnet pole-arc which results in minimum cogging torque as well as assessment of the effect on the maximum available torque using 3D Finite Element Analysis (FEA) is investigated in this design. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.