• Title/Summary/Keyword: Axial tomography

Search Result 207, Processing Time 0.03 seconds

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

  • Lee, Sang-Won;Song, Hyun-Woo;Kim, Bong-Kyu;Jung, Moon-Youn;Kim, Seung-Hwan;Cho, Jae-Du;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.

Bone change of mandibular condyle using cone beam computed tomography (Cone beam형 전산화단층촬영법을 이용한 하악과두의 골변화에 관한 연구)

  • Lee, Ji-Un;Kim, Hyung-Seop;Song, Ju-Seop;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.139-147
    • /
    • 2007
  • Purpose: To assess bone changes of mandibular condyle using cone beam computed tomography (CBCT) in temporomandibular disorder (TMD) patients. Materials and Methods: 314 temporomandibular joints (TMJs) images of 163 TMD patients were examined at the Department of Oral and Maxillofacial Radiology, Chonbuk National University. The images were obtained by PSR9000N (Asahi Roentgen Co., Japan) and reconstructed by using Asahivision software (Asahi Roentgen Co., Japan). The CBCT images were examined three times with four weeks interval by three radiologists. Bone changes of mandibular condyle such as flattening, sclerosis, erosion and osteophyte formation were observed in sagittal, axial, coronal and 3 dimensional images of the mandibular condyle. The statistical analysis was performed using SPSS 12.0. Intra- and interobserver agreement were performed by 3 radiologists without the knowledge of clinical information. Results: Osteophyte (2.9%) was found more frequently on anterior surface of the mandibular condyle. Erosion (31.8%) was found more frequently on anterior and medial surfaces of the mandibular condyle. The intraobserver agreement was good to excellent (k=0.78-0.84), but interobserver agreement was fair (k=0.45). Conclusion: CBCT can provide high qualified images of bone changes of the TMJ with axial, coronal and 3 dimensional images.

  • PDF

Evaluation of mandibular condyle position in Class III patients after bimaxillary orthognathic surgery: A cone-beam computed tomography study

  • Osman Kucukcakir;Nilufer Ersan;Yunus Ziya Arslan;Erol Cansiz
    • The korean journal of orthodontics
    • /
    • v.54 no.4
    • /
    • pp.247-256
    • /
    • 2024
  • Objective: This retrospective study evaluated the mandibular condyle position before and after bimaxillary orthognathic surgery performed with the mandibular condyle positioned manually in patients with mandibular prognathism using cone-beam computed tomography. Methods: Overall, 88 mandibular condyles from 44 adult patients (20 female and 24 male) diagnosed with mandibular prognathism due to skeletal Class III malocclusion who underwent bilateral sagittal split ramus osteotomy (BSSRO) and Le Fort I performed using the manual condyle positioning method were included. Cone-beam computed tomography images obtained 1-2 weeks before (T0) and approximately 6 months after (T1) surgery were analyzed in three planes using 3D Slicer software. Statistical significance was set at P < 0.05 level. Results: Significant inward rotation of the left mandibular condyle and significant outward rotation of the right mandibular condyle were observed in the axial and coronal planes (P < 0.05). The positions of the right and left condyles in the sagittal plane and the distance between the most medial points of the condyles in the coronal plane did not differ significantly (P > 0.05). Conclusions: While the change in the sagittal plane can be maintained as before surgery with manual positioning during the BSSRO procedure, significant inward and outward rotation was observed in the axial and coronal planes, respectively, even in the absence of concomitant temporomandibular joint disorder before or after the operation. Further long-term studies are needed to correlate these findings with possible clinical consequences.

Three-dimensional analysis of pharyngeal airway change of skeletal class III patients in cone beam computed tomography after bimaxillary surgery

  • Kwon, Young-Wook;Lee, Jong-Min;Kang, Joo-Wan;Kim, Chang-Hyen;Park, Je-Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • Introduction: To evaluate the 3-dimensional changes in the pharyngeal airway of skeletal class III patients after bimaxillary surgery. Materials and Methods: The study sample consisted of 18 Korean patients that had undergone maxillary setback or posterosuperior movement and mandibular bilateral sagittal split osteotomy setback surgery due to skeletal class III malocclusion (8 males, 10 females; mean age of 28.7). Cone beam computed tomography was taken 1 month before and 6 months after orthognathic surgery. Preoperative and postoperative volumes of the nasopharyngeal, oropharyngeal, and laryngopharyngeal airways and minimum axial areas of the oropharyngeal and laryngopharyngeal spaces were measured. Moreover, the pharyngeal airway volume of the patient group that had received genioplasty advancement was compared with the other group that had not. Results: The nasopharyngeal and laryngopharyngeal spaces did not show significant differences before or after surgery. However, the oropharyngeal space volume and total volume of pharyngeal airway decreased significantly (P<0.05). The minimum axial area of the oropharynx also decreased significantly. Conclusion: The results indicate that bimaxillary surgery decreased the volume and the minimum axial area of the oropharyngeal space. Advanced genioplasty did not seem to have a significant effect on the volumes of the oropharyngeal and laryngopharyngeal spaces.

The Morphometric Analysis of the Extraforamen in the Lumbosacral Spine: Magnetic Resonance Imaging and Computed Tomography Study

  • Jang, Jee-Soo;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.336-339
    • /
    • 2005
  • Objective: The goal of this study is to establish the anatomical criteria of the normal and stenotic lumbosacral extraforaminal tunnel, and also to determine the effect of the pathologic intervertebral disc on the size of extraforaminal tunnel in the lumbosacral spine. Methods: MRI and CT scans were reviewed and classified into two groups: (1) 40 patients with normal discs at L5- S1 (Group 1) and (2) 43 patients that had undergone successful decompression surgery for extraforaminal entrapment at the lumbosacral region(Group 2). In these two groups, the following parameters were compared are compared: the distance between the disc margin and the ala (lumbosacral tunnel) on the axial MRI, and the posterior disc height at L5-S1 on the mid-sagittal MRI. Results: In the group 1, the mean distance of the lumbosacral tunnel on the axial MRI was $10.1{\pm}2.2mm$. The mean posterior disc height at L5-S1 was $7.4{\pm}1.7mm$ on the mid-sagittal MRI. In the group 2, the mean distance between the disc margin and the ala (costal process) was $1.6{\pm}1.3mm$ on the axial MRI. The average posterior disc height was $4.4{\pm}1.5mm$ on the mid-sagittal MRI. The posterior disc height and the size of the lumbosacral tunnel between the two groups were statistically different on the paired t-test (p<0.0001). However, the posterior disc height was not positively correlated with the size of the extraforaminal tunnel for group 2 (p=0.909). Conclusion: The extraforaminal stenosis was correlated to pathologic disc. However, the posterior disc height was not correlated to the size of the of the extraforaminal tunnel.

Reference line for computed tomogram of the mandible (하악골 전산화단층사진촬영시 기준선에 관한 연구)

  • You Choong-Hyun;Kim Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.32 no.3
    • /
    • pp.153-157
    • /
    • 2002
  • Purpose : This study was performed to determine the proper reference line for taking axial computed tomograms from which the good cross-sectional views can be reformatted by multiplanar reconstruction. Methods : Three dry mandibles with implanted gutta percha cones in the extracted socket were scanned axially according to 6 reference lines of 2 mandibular positions with computed tomogram Hitachi W550. The accuracy of measurements of the lengths of implanted gutta perch a cones in the each cross-sectional view reformatted from axial computed tomogram by multiplanar reconstruction was evaluated. Results: The difference between the measurements and the real length of implant was smallest in the bucco-lingual views reformatted from the axial views scanned according to the reference line of group V-a. The smaller the angle difference between reference line and occlusal line was, the smaller the difference between the measurements in the bucco-lingual views reformatted from axial views and the real length of implant. The majority of measured widths of implants in the bucco-lingually reformatted views were larger than the actual values. Conclusions : When the mandible is inclined within the limitation of gantry angle and scanned with the reference line coincident with occlusal plane, the bucco-lingual view can be reformatted without deformation of images from the axially scanned images.

  • PDF

Comparative evaluation of computed tomography for dental implants on the mandibular edentulous area (하악 무치악 부위의 임플란트 이식을 위한 전산화단층촬영 영상의 비교 평가)

  • Sun, Kyung-Hoon;Jeong, Ho-Gul;Park, Hyok;Park, Chang-Seo;Kim, Kee-Deog
    • Imaging Science in Dentistry
    • /
    • v.39 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the clinical usefulness of the recently developed multi-detector computed tomography and cone beam computed tomography in pre-operative implant evaluation, by comparing them with the single detector computed tomography, already confirmed for accuracy in this area. Materials and Methods: Five partially edentulous dry human mandibles, with $1{\times}1mm$ gutta percha cones, placed in 5mm intervals posterior to the mental foramen on each side of the buccal part of the mandible, were used in this study. They were scanned as follows: 1) Single detector computed tomography: slice thickness 1mm, 200mA, 120kV 2) Multi-detector computed tomography: slice thickness 0.75mm, 250mA, 120kV 3) Cone beam computed tomography: 15mAs, 120kV Axial images acquired from three computed tomographies were transferred to personal computer, and then reformatted cross-sectional images were generated using V-Implant $2.0^{(R)}$ (CyberMed Inc., Seoul, Korea) software. Among the cross-sectional images of the gutta perch a cone, placed in the buccal body of the mandible, the most precise cross section was selected as the measuring point and the distance from the most superior border of the mandibular canal to the alveolar crest was measured and analyzed 10 times by a dentist. Results: There were no significant intraobserver differences in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). There were no significant differences among single detector computed tomography, multi-detector computed tomography and cone beam computed tomography in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). Conclusion: Multi-detector computed tomography and cone beam computed tomography are clinically useful in the evaluation of pre-operative site for mandibular dental implants, with consideration for radiation exposure dose and scanning time.

  • PDF

ORGAN DOSE, EFFECTIVE DOSE AND RISK ASSESSMENT FROM COMPUTED TOMOGRAPHY TO HEAD AND NECK REGION (두경부 전산화 단층촬영시의 주요 장기선량, 유효선량 및 위험도)

  • Kim Ae-Jj;Cho Bong-Hae;Nah Kyung-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • The organ or tissue doses were determined with head and neck phantom measurement for multiple axial scans (36 slices), multiple coronal scans (13 slices), 3 types of single axial scans(orbit, maxillary sinus and mandibular canal) and single coronal scan (maxillary sinus). For each scan sequence 30 TLDs were placed in selected sites(16 internal sites and 14 external sites) in a tissue-equivalent phantom. The exposure was made at 120kVp, 500mAs with 5 mm slice width. The results were as follows : 1. In multiple axial scans, the greatest effective dose recorded was that delivered to the thyroid glands(2.77 mSv) and the least was that received by the skin(0.05 mSv). From these data, stochastic effects were 202.2x10/sup -6/ and 3.7×10/sup -6/, respectively. 2. In multiple coronal scans, the greatest effective dose recorded was that delivered to the salivary glands(0.58 mSv) and the least was that received by the skin(0.01 mSv). From these data, stochastic effects were 42.2×10/sup -6/ and 0.7×10/sup -6/, repectively. 3. Among single axial scans, the greatest effective dose recorded was that delivered to the salivary gland(0.38 mSv) in maxillary sinus scan. From this data, stochastic effect was 27.7×10/sup -6/. 4. In single coronal scan, the greatest effective dose recorded was that delivered to the salivary gland(0.01 mSv). From this data, stochastic effect was 1.0×10/sup -6/. 5. The equivalent dose measured that delivered to the lens of the eyes was 69.64 mSv in multiple axial scan, 39.32 mSv in multiple coronal scan and 36.77 mSv in single axial scan(orbit).

  • PDF

Preoperative N Staging of Gastric Cancer by Stomach Protocol Computed Tomography

  • Kim, Se Hoon;Kim, Jeong Jae;Lee, Jeong Sub;Kim, Seung Hyoung;Kim, Bong Soo;Maeng, Young Hee;Hyun, Chang Lim;Kim, Min Jeong;Jeong, In Ho
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.149-156
    • /
    • 2013
  • Purpose: Clinical stage of gastric cancer is currently assessed by computed tomography. Accurate clinical staging is important for the tailoring of therapy. This study evaluated the accuracy of clinical N staging using stomach protocol computed tomography. Materials and Methods: Between March 2004 and November 2012, 171 patients with gastric cancer underwent preoperative stomach protocol computed tomography (Jeju National University Hospital; Jeju, Korea). Their demographic and clinical characteristics were reviewed retrospectively. Two radiologists evaluated cN staging using axial and coronal computed tomography images, and cN stage was matched with pathologic results. The diagnostic accuracy of stomach protocol computed tomography for clinical N staging and clinical characteristics associated with diagnostic accuracy were evaluated. Results: The overall accuracy of stomach protocol computed tomography for cN staging was 63.2%. Computed tomography images of slice thickness 3.0 mm had a sensitivity of 60.0%; a specificity of 89.6%; an accuracy of 78.4%; and a positive predictive value of 78.0% in detecting lymph node metastases. Underestimation of cN stage was associated with larger tumor size (P<0.001), undifferentiated type (P=0.003), diffuse type (P=0.020), more advanced pathologic stage (P<0.001), and larger numbers of harvested and metastatic lymph nodes (P<0.001 each). Tumor differentiation was an independent factor affecting underestimation by computed tomography (P=0.045). Conclusions: Computed tomography with a size criterion of 8 mm is highly specific but relatively insensitive in detecting nodal metastases. Physicians should keep in mind that computed tomography may not be an appropriate tool to detect nodal metastases for choosing appropriate treatment.

The Effect of the Axial Plane on Measurement of Available Bone Height for Dental Implant in Computed Tomography of the Mandible (하악의 전산화 단층사진에서 횡단면이 임플랜트를 위한 가용골 높이의 결정에 미치는 영향)

  • Jhin, Min-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.379-388
    • /
    • 2002
  • For the success of dental implant, accurate radiographic evaluation is prerequisite for planning the location of the osseointegrated implants and avoiding injury to vital structures. CT/MPR(computed tomography/multiplanar reformation) shows improved visualization of inferior alveolar canal. In order to obtain cross-sectional images parallel to the teeth, the occlusal plane is used to orientate for the axial plane. If the direction of axial plane is not parallel to the occlusal plane, the reformatted cross-sectional scans will be oblique to the planned fixture direction and will not show the actual dimension of the planned fixture's location. If the available bone height which measured in the cross-sectional view is much greater than the actual available bone height, penetration of canal may occur. The aim of this study is to assess the effect of the axial plane to measurement of available bone height for dental implant in computed tomography of the mandible. 40 patients who had made radiographic stents and had taken CT were selected. The sites that were included in the study were 45 molar regions. In the central panoramic scan, the length from alveolar crest to superior border of inferior alveolar canal(available bone height, ABH) was measured in direction of reformatted cross-sectional plane(uncorrected ABH). Then, length from alveolar crest to superior border of canal was measured in direction of stent(corrected ABH). The angle between uncorrected ABH and corrected ABH was measured. From each ABH, available fixture length was decided by $Br{{\aa}}nemark$ system. The results were following ; the difference between two ABHs was statistically significant in both first and second molar(p< 0.01). The percentage of difference more than 1 mm was 8.7% in first molar and 15.5% in second molar. The percentage of difference more than 2 mm was 2.0% in first molar and 6.6% in second molar. The maximum value of difference was 2.5 mm in first molar and 2.2 mm in second molar. The correlations between difference of 2 ABHs and angle was positive correlations in both first and second molar. The correlation coefficient was 0.534 in first molar and 0.728 in second molar. The second molar has a stronger positive correlation. The percentage of disagreement between 2 fixture lengths from two ABHs was 24.4% in first molar and 28.9% in second molar.