• Title/Summary/Keyword: Axial response

Search Result 581, Processing Time 0.035 seconds

Slope-Rotatability in Axial Directions for Second Order Response Surface Designs

  • Jang Dae-Heung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.253-264
    • /
    • 2005
  • Hader and Park(l978) suggested the concept of slope-rotatability in axial directions for second order response surface designs. In this paper, the moment conditions for slope-rotatability in axial directions are shown and the measures for evaluating slope-rotatability in axial directions are proposed.

Vibration analysis of a cracked beam with axial force and crack identification

  • Lu, Z.R.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.355-371
    • /
    • 2012
  • A composite element method (CEM) is presented to analyze the free and forced vibrations of a cracked Euler-Bernoulli beam with axial force. The cracks are introduced by using Christides and Barr crack model with an adjustment on one crack parameter. The effects of the cracks and axial force on the reduction of natural frequencies and the dynamic responses of the beam are investigated. The time response sensitivities with respect to the crack parameters (i.e., crack location, crack depth) and the axial force are calculated. The natural frequencies obtained from the proposed method are compared with the analytical results in the literature, and good agreement is found. This study shows that the cracks in the beam may have significant effects on the dynamic responses of the beam. In the inverse problem, a response sensitivity-based model updating method is proposed to identify both a single crack and multiple cracks from measured dynamic responses. The cracks can be identified successfully even using simulated noisy acceleration responses.

Measurement of Unsteady Total Pressure downstream of an 1-Stage Axial Turbine (1단 축류터빈 로터의 후류에서 비정상 전압력 측정에 관한 연구)

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.318-323
    • /
    • 2005
  • To evaluate the accurate performance of turbomachinery, it is important to measure the unsteady flow phenomena downstream of the rotor blade. This paper presents the development of the fast-response total pressure probe for the measurement of the total pressure field at the exit of rotor and the result of measurement in a 1-stage axial turbine. The fast-response total pressure probe was fabricated by installing a fast-response pressure sensor near the head of a Kiel probe. And it measured the phase-lock averaged total pressure downstream of an 1-stage axial turbine. The developed probe successfully measured the accurate total pressure distribution at rotor exit and made possible to evaluate the loss distribution and the accurate performance of turbomachinery.

  • PDF

Experimental Analysis of Bounce, Roll and Pitch Frequencies of Major Systems of a Large Truck using a Multi-axial Road Simulator (다축 로드 시뮬레이터를 이용한 대형트럭 주요 시스템의 바운스와 롤 및 피치 주파수의 실험적 분석)

  • Moon, Il-Dong;Oh, Chae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.128-135
    • /
    • 2005
  • This paper presents a scheme for experimentally analyzing bounce, roll and pitch frequencies of major systems of a large truck using a multi-axial road simulator. The excitation input (amplitude and frequency range) fur a frequency response test with the multi-axial road simulator is selected in order that bounce, roll and pitch modes are not coupled each other, the excitation amplitude can be reproduced in a specified excitation frequency range, and tires do not lose contact with posters. Three accelerometers, one gyroscope and four displacement meters are used in the frequency response test using the multi-axial road simulator. The reliability of the presented bounce mode frequency response test scheme is validated by comparing the result from a test using the multi-axial road simulator with the result from a road driving test. The road driving test is performed with velocities of 20km/h and 30km/h, and in an unladen state. The vertical accelerations at the cab and the front axle are measured in the road driving test. The roll and pitch mode frequency response tests are also performed with the presented frequency response test scheme. Roll and pitch frequencies of major systems of a large truck that are hard to acquire from a road driving test are analyzed as well as bounce frequency.

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.

Design of An Axial Flow Fan with Shape Optimization (형상 최적화를 통한 축류송풍기의 설계)

  • Seo Seoung-Jin;Choi Seung-Man;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.603-611
    • /
    • 2006
  • This paper presents the response surface optimization method using three-dimensional Wavier-Stokes analysis to optimize the blade shape of an axial flow fan. Reynolds-averaged Wavier-Stokes equations with $k-{\epsilon}$ turbulence model are discretized with finite volume approximations using the unstructured grid. Regression analysis is used for generating response surface, and it is validated by ANOVA and t-statistics. Four geometric variables, i.e., sweep and lean angles at mean and tip respectively were employed to improve the efficiency. The computational results are compared with experimental data and the comparisons show generally good agreements. As a main result of the optimization, the total efficiency was successfully improved. Also, detailed effects of sweep and lean on the axial flow fan are discussed.

Optimization of Blade Sweep in an Axial Compressor Rotor (축류압축기 동익의 스윕각 최적화)

  • Jang, Choon-Man;Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.437-442
    • /
    • 2004
  • The optimization of a blade sweep for a transonic axial compressor rotor (NASA rotor 37) has been performed using a response surface method and a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. Two shape variables of the rotor blade, which are used to define a blade sweep, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. The result shows that the adiabatic efficiency is increased to about 1 percent compared to that of the reference shape of the rotor blade. Relatively high increasement of the adiabatic efficiency is obtained between 20 and 60 percent span. In the present study, backward swept blade is more effective to increase the adiabatic efficiency In the axial compressor rotor.

  • PDF

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

Shape Optimization of a Stator Blade in a Single-Stage Transonic Axial Compressor (단단 천음속 축류압축기의 정익형상 최적설계)

  • Kim Kwang Yong;Jang Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.625-632
    • /
    • 2005
  • This paper describes the shape optimization of a stator blade in a single-stage transonic axial compressor. The blade optimization has been performed using response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the stator blade, which are used to define a stacking line, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. Throughout the shape optimization of a stator blade, the adiabatic efficiency is increased to 5.8 percent compared to that of the reference shape of the stator. The increase of the efficiency is mainly caused by the pressure enhancement in the stator blade. Flow separation on the blade suction surface of the stator is also improved by optimizing the stator blade. It is noted that the optimization of the stator blade is also useful method to increase the adiabatic efficiency in the axial compressor as well as the optimization of a rotor blade, which is widely used now.