• Title/Summary/Keyword: Axial length

Search Result 909, Processing Time 0.025 seconds

Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle columns

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.601-615
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, wall frames and columns, the use of back-to-back built-up CFS angle sections are becoming increasingly popular. In such an arrangement, intermediate fasteners are required at discrete points along the length, preventing the angle-sections from buckling independently. Limited research is available in the literature on the axial strength of back-to-back built-up CFS angle sections. The issue is addressed herein. This paper presents the results of 16 experimental tests, conducted on back-to-back built-up CFS screw fastened angle sections under axial compression. A nonlinear finite element model is then described, which includes material non-linearity, geometric imperfections and explicit modelling of the intermediate fasteners. The finite element model was validated against the experimental test results. The validated finite element model was then used for the purpose of a parametric study comprising 66 models. The effect of fastener spacing on axial strength was investigated. Four different cross-sections and two different thicknesses were analyzed in the parametric study, varying the slenderness ratio of the built-up columns from 20 to 120. Axial strengths obtained from the experimental tests and finite element analysis were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparison showed that the DSM is over-conservative by 13% on average. This paper has therefore proposed improved design rules for the DSM and verified their accuracy against the finite element and test results of back-to-back built-up CFS angle sections under axial compression.

Comparison of Microstructure and Hardness of Pure Copper Fabricated by Multi-Axial Forging and Multi-Axial Diagonal Forging (다축단조와 다축대각단조로 제조된 순동의 미세조직 및 경도 비교)

  • Lee, J.K.;Kwon, S.C.;Kim, S.T.;Jeong, H.T.;Kim, Y.G.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.257-265
    • /
    • 2019
  • Multi-axial forging (MAF), a severe plastic deformation technique, is known to be difficult to obtain materials with homogeneous microstructures. Recently, multi-axial diagonal forging (MADF) process has been developed to solve this problem. In this study, in order to compare the microstructural and mechanical homogeneities of the MAFed and MADFed samples, oxygen-free copper (OFC) cubes measuring 25 mm in length were deformed through MAF and MADF processes and the average grain size and hardness were measured at the edge, face, and center regions of the samples. In the MAFed samples, ultrafine grains were formed at the center region, but a considerable amount of coarse grains remain at the face region. Therefore, the MAFed samples showed a high inhomogeneity in regards to grain size and hardness. On the contrary, in the case of the MADFed sample, the grain sizes at the edge, face, and center regions were similar and the hardness in all the regions are almost similar. This indicates that the MADFed sample has a homogeneous microstructure and uniform mechanical properties, which can be attributed to the homogeneous distribution of the effective strain throughout the material. The results of this study suggests that the MADF is a suitable process in the fabrication of high-strength copper materials with a homogeneous and ultrafine grain structure.

A Study on the Measurement of Break-up Length for the Diesel Sprays (디젤분무의 분열길이 측정에 관한 연구)

  • Jang, S.H.;Ra, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.22-28
    • /
    • 1999
  • The injected liquid does not break-up instantly after injection for diesel engine. There is some unbroken portion, which is the liquid core(The length of liquid core is called the break-up length) in the spray. If the liquid core is longer than the depth of the bowl in the small DI diesel engine, the liquid core impinges on the surface of the piston. Once the liquid core impinges on the surface, it cannot ignite or burn rapidly and thus prolongs burning time with a degradation in thermal efficiency. The break-up length of a diesel spray in a compressure vessel was measured by an electric resistance method, A voltage was applied between the nozzle and screen, bar, needle electrode inserted at various axial and radial positions into atomizing sprays. As a result, a current flows not only in the region of liquid core but also through the droplets of the spray. It is found that the break-up length measured with screen electrode is overestimated. The break-up length of the spray is found to be proportional to the square root of the density ratio of fuel and surrounding gas. The break-up length of the spray decreases as the injection pressure and the back pressure increase.

  • PDF

Width-to-length ratio comparison between ameloblastomas and odontogenic keratocysts in the body of the mandible: A preliminary study

  • Omami, Galal;Adel, Mohamed
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.319-322
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the utility of the width-to-length ratio for the differentiation of ameloblastomas and odontogenic keratocysts in the body of the mandible. Materials and Methods: This study retrospectively reviewed 9 patients with ameloblastomas and 9 patients with odontogenic keratocysts using cone-beam computed tomography. The width-to-length ratio was determined by measuring the ratio between the greatest buccolingual dimension and the greatest perpendicular anteroposterior dimension of the lesion on the axial view. One-way analysis of variance was used to examine the difference in the width-to-length ratio between the 2 types of lesions. Statistical significance was tested at P<0.05. Results: Ameloblastomas showed a mean width-to-length ratio of 0.64, whereas odontogenic keratocysts showed a mean width-to-length ratio of 0.41. The cut-off value with which the 2 types of lesions were differentiated was 0.5. The width-to-length ratios of ameloblastomas were significantly higher than those of odontogenic keratocysts (P<0.05). Conclusion: The width-to-length ratio might be used to differentiate between ameloblastomas and odontogenic keratocysts.

Geometrical Non-linear Analyses of Tapered Variable-Arc-Length Beam subjected to Combined Load (조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • This paper deals with geometrical non-linear analyses of the tapered variable-arc-length beam, subjected to the combined load with an end moment and a point load. The beam is supported by a hinged end and a frictionless sliding support so that the axial length of the deformed beam can be increased by its load. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. These differential equations are numerically solved by the iteration technique for obtaining the elastica of the deformed beam. For validating theories developed herein, laboratory scaled experiments are conducted.

A Study of the Twisting and Extrusion Process of the Product with Involute Helical Fin from the Round Billet by the Upper Bound Analysis (상계해법에 의한 원형빌렛으로부터 인볼루트 헬리컬핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 박대윤;진인태
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.302-310
    • /
    • 2001
  • The twisting and extrusion process of the product with involute helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted inclined die surface connecting the die enterance section and the die exit section linearly. In the analysis, the internal shear surface is defined as the curved twisted plane from the twisting of die surface and the shear work is calculated by the consumption of shear energy. The increase rate of angular velocity is determined by the minimization of plastic work. The angular velocity of die exit can be controlled by the land length and the length of inclined die. The alular velocity assums to be increased linearly by the axial distance from the die enterance to the die exit. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction constant.

  • PDF

Free vibrations of inclined arches using finite elements

  • Chucheepsakul, Somchai;Saetiew, Wasuroot
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.713-730
    • /
    • 2002
  • This paper presents a finite element approach for determining the natural frequencies for planar inclined arches of various shapes vibrating in three-dimensional space. The profile of inclined arches, represented by undeformed centriodal axis of cross-section, is defined by the equation of plane curves expressed in the rectangular coordinates which are : circular, parabolic, sine, elliptic, and catenary shapes. In free vibration state, the arch is slightly displaced from its undeformed position. The linear relationship between curvature-torsion and axial strain is expressed in terms of the displacements in three-dimensional space. The finite element discretization along the span length is used rather than the total are length. Numerical results for arches of various shapes are given and they are in good agreement with those reported in literature. The natural frequency parameters and mode shapes are reported as functions of two nondimensional parameters: the span to cord length ratio (e) and the rise to cord length ratio (f).

Supersonic Plug Nozzle Design and Comparison to the Minimum Length Nozzle Configuration

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2006
  • A method to design the contour and conception of a plug nozzle of arbitrary shape, but specified exit flow conditions is presented. Severals shapes can be obtained for exit Mach number by changing the specific heats ratio. The characteristics of the nozzle in terms of length, weight and pressure force exerted on the wall are compared to the Minimum Length Nozzle and found to be better. Our field of study is limited to the supersonic mode to not to have the dissociation of the molecules. The design method is based on the use of the Prandtl Meyer function of a perfect gas. The flow is not axial at the throat, which may be advantageous for many propulsion applications. The performance benefits of the plug nozzle compared to the Minimum Length Nozzle are also presented.

Effects of shear deformation on the effective length of tapered columns with I-section for steel portal frames

  • Li, Guo-Qiang;Li, Jin-Jun
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.479-489
    • /
    • 2000
  • Based on the stiffness equation of the tapered beam element involving the effects of axial force and shear deformation, numerical investigations are carried out on elastic instability for web-linearly tapered columns with I-section of steel portal frames. Effects of shear deformation on the effective length of the tapered columns with I-section are studied. An efficient approach for determining the effective length of the tapered portal frame columns considering effects of shear deformation is proposed.

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.