• Title/Summary/Keyword: Axial groove

Search Result 65, Processing Time 0.03 seconds

On the Sealing Characteristics Analysis and Design of Bi-Polymer O-ring Seals

  • Kim, Chung Kyun;Ko, Young Bae;Cho, Seung Hyun
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.40-45
    • /
    • 2001
  • The paper deals with a non-linear finite element analysis of the thermomechanical distortions of an elastomeric O-ring seal including a temperature gradient. Axial compression of O-ring seals, as well as the influence of the temperature gradients and various O-ring seal models, are investigated based on the axisymmetric analysis. The highest temperature occurs near the interface of the O-ring between the dovetail groove bottom and the O-ring seal. The calculated FEM results indicate that the composite O-ring with the diametral ratio, 0.8 shows very stable and recommendable compared with other seal models far elevated temperatures and corrosive environments.

  • PDF

A Finite Element Simulation of the V-Belt Pulley Spinning Process (V-벨트 풀리 스피닝 성형공정의 유한요소 시뮬레이션)

  • Kim S. J.;Kim H. R.;Lee T. K.;Kim Y. S.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.81-84
    • /
    • 2001
  • Some trials to simulate the spinning process by which V-belt pulley is usually being manufactured are done in this study. 2D finite element analysis (FEA) for the whole process to produce a mono-typed pulley including preforming, 1st spinning, axial compression and 2nd spinning processes is carried out using the commercial code $DEFORM2D^{TM}$. The sectional shape after each process is compared with that of real product. The deformed shape obtained from the FEA, on the whole, coincides with the experimental result well, but the thickness around the bottom of the V-groove is somewhat different each other.

  • PDF

Flow Ripple Simulation Model of Axial Piston Pump (액시얼 피스톤 펌프의 맥동유량 시뮬레이션 모델)

  • Lee I.Y.;Park J.H.;Kang M.G.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.3
    • /
    • pp.12-17
    • /
    • 2005
  • This paper presents a theoretical study of the delivery flow ripple produced by a swash plate type hydraulic piston pump for the purpose of developing a computer simulation program capable of predicting the pump source flow ripple accurately at the design stage. Particular attention has been paid to the development of the theoretical model by clarifying quantitatively the design influences of key parts of valve plate such as relief groove and pre-compression/expansion.

  • PDF

Cutting Characteristics Comparison between CBN and Coated CBN Tools in Turning SCM440 (SCM440의 선삭가공시 CBN공구와 CBN코팅공구의 절삭특성 비교)

  • Bang, H.I.;Shin, H.G.;Oh, S.H.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • The purpose of this study is to investigate cutting characteristics and wear behavior in SCM440 steel with different cutting tools, CBN(Cubic Boron Nitride) and coated CBN. During the test coated CBN tool especially with TiAlN showed better wear resistance behavior than orginal CBN tools. In the interrupted cutting condition, axial groove affected tool surface with impact force during the turning operation. For advantageous turning parameter in the interrupted process it is recommendable that lower speed. Also surface roughness showed better behavior in the coated CBN tool conditions than normal CBN conditions. Mainly this is caused by reduced friction between material and tool surface with coated layer.

A Study on Cylinder Bore Wear during Engine Durability Test (엔진 내구시험 시 실린더 보아의 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.131-136
    • /
    • 2006
  • Cylinder bore wear may not be a problem in most current automotive engines. However, a small change in cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each pare0s wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of cylinder bore diameter are obtained from three engines before and after engine durability test. The calculated wear data of cylinder bore diameter are turn out to be twice of the lower bound of averaged test values at TDC and the lower bound at BDC.

Study on Fuel Lubrication Performance of a High Speed Rolling Element Bearing (소형 고속 구름베어링의 연료윤활 특성 연구)

  • Kim, Ki-Tae;Kim, Sung-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-426
    • /
    • 2008
  • A parametric study was carried out to find the fuel lubrication performance of high speed small rolling element bearings. Both MIL-PRF-7808 turbine oil and JP-8 aircraft fuel were used as the lubricant to compare the operational characteristics. 17 mm inner diameter deep groove ball bearing and 20 mm cylindrical roller bearing were used. A high speed bearing test rig was developed and the testing was done with varying applied load, cooling air temperature, lubricant flow rate, and speed. Fuel caused more cage wear than oil for ball bearing with increasing axial load and rotational speed. The bearing temperature using fuel was lower than that using oil, and this seems to be the result of the high cooling capacity of fuel. According to various tests, the fuel lubrication is applicable for the lubrication on the main shaft bearings of expendable small gas turbines.

  • PDF

Effects of Geometry of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzles on J-Groove Weld Residual Stress (원자로 상부헤드 제어봉구동장치 관통노즐 형상이 J-Groove 용접잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Lee, Sung-Ho;Hur, Nam-Young;Bae, Hong-Yeol;Oh, Chang-Young;Kim, Ji-Soo;Park, Heung-Bae;Lee, Seung-Geon;Kim, Jong-Sung;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1337-1345
    • /
    • 2011
  • In pressurized water reactors (PWRs), the reactor pressure vessel (RPV) upper head contains numerous control rod drive mechanism (CRDM) nozzles. In the last 10 years, the incidences of cracking in alloy 600 CRDM nozzles and their associated welds has increased significantly. Several axial and circumferential cracks have been found in CRDM nozzles in European PWRs and U.S. nuclear power plants. These cracks are caused by primary water stress corrosion cracking (PWSCC) and have been shown to be driven by welding residual stresses and operational stresses in the weld region. Therefore, detailed finite-element (FE) simulations for the Korea Nuclear Reactor Pressure Vessel have been conducted in order to predict the magnitudes of the weld residual stresses in the tube materials. In particular, the weld residual stress results are compared in terms for nozzle location, geometry factor$r_o$/t, geometry of fillet, and adjacent nozzle.

Development of Knee Radiography Auxiliary Device (무릎 방사선 검사 보조장비의 개발)

  • Do-Byung Rhee;Il-Hwan Bae;Hye-Jung Kim;So-Mi Lee;Deok-Mun Kwon;Dong-Ho Choi;Hee-June Kim
    • Journal of radiological science and technology
    • /
    • v.47 no.2
    • /
    • pp.87-95
    • /
    • 2024
  • Most knee axial radiographs, known as sunrise and skyline view, were performed with the patient in the prone position. The authors tried to address some of the shortcomings of conventional radiography by developing a new radiography method, K-RAD. According to previous research, the K-RAD method showed a wider patellar-femoral joint space than conventional radiography and provided a clear patellar hemi-lateral image with a constant gap between the femoral trochlear groove and tibial tuberosity. The authors worked with an orthopedic specialist to perform radiography using the K-RAD method rather than using existing methods, and as a result, the two knees were aligned correctly and a clear image of the patellar-femoral joint space was created. The authors propose the K-RAD method for knee axial radiography because the K-RAD method provides a sense of stability to the patient and provides images with high diagnostic value.

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Fluid Film Journal Bearing (능동 제어 유체 윤활 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • No, Byeong-Hu;Kim, Gyeong-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.116-121
    • /
    • 2001
  • The paper presents the dynamic characteristics of a rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional. derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axial groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The proportional control increases the stability threshold without affecting the whirl ratio. However, for the derivative control of the bearing, increase of stability threshold speed is accompanied by a parallel reduction of the whirl ratio. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results 7how the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

A Study on Engine Oil Consumption Considering Wear of Piston-Ring and Cylinder Bore (피스톤-링 및 실린더 보아 마모를 고려한 엔진오일소모 연구)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 2007
  • Ring and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Here, the oil amount through top ring gap into combustion chamber is estimated as engine oil consumption. Furthermore, the wear theories of ring and cylinder bore are included. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. The wear data of rings and cylinder bore are obtained from three engines after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below. It is shown that the important factor regarding oil consumption increasement is the wear of ring face.