• Title/Summary/Keyword: Axial groove

Search Result 65, Processing Time 0.023 seconds

Suppression of Cavitation in Inducer by J-Groove (J-그루브에 의한 인듀서의 캐비테이션 억제)

  • Kurokawa, Junichi;Choi, Young-Do
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.776-781
    • /
    • 2005
  • Cavitation is the most serious problem caused in developing high-speed turbopump, and use of an inducer is often made to avoid cavitation in main impeller. Thus, the inducer always operates under the worst condition of cavitation. If it could be possible to control and suppress cavitation in the inducer by some new device, it would also be possible to suppress cavitation occurring in all types of pumps. The purpose of our present study is to develop a new effective method of controlling and suppressing cavitation in an inducer using shallow grooves, named as "J-Groove", J-Groove is installed on the casing wall near the blade tip to use the pressure difference between high pressure region and low pressure region in the axial direction at the inlet of the inducer. The results show that proper combination of backward-swept inducer with J-Groove improves suction performance of turbopump remarkably in the range of partial flow rate as well as designed flow rate. The rotating backflow cavitation occurring in the range of low flow rate and the cavitation surge occurring in the vicinity of the best efficiency point can be almost fully suppressed by installing J-Groove.

  • PDF

A Study on the Suppression of Cavitation in Inducer by J-Groove (J-그루브를 이용한 인듀서의 캐비테이션 억제에 관한 연구)

  • Choi, Young-Do;Kurokawa, Junichi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1239-1247
    • /
    • 2005
  • Cavitation is the most serious problem in developing high-speed turbopump, and inducer is often used to avoid cavitation in main impeller. Thus, inducer is always operating in the worst .cavitation condition. If it is possible to control and suppress cavitation in inducer by some new device, it might be possible to suppress cavitation occurring in any type of pumps. The purpose of present study is to develop a new effective method of controlling and suppressing cavitation in inducer using shallow grooves, which is named 'J-Groove'. J-Groove is installed on the casing wall near the blade tip to use the pressure difference between high pressure region and low pressure region of the inducer in an axial direction. The results show that proper combination of backward-swept inducer with J-Groove improves suction performance of turbopump remarkably in the range of partial flow rate as well as designed flow rate. The rotating backflow cavitation occurring in the range of low flow rate and the cavitation surge occurring in the vicinity of the best efficiency point can be almost suppressed by installing J-Groove.

Analysis of Thermal Performance in a Micro Flat Heat Pipe with Axially Trapezoidal Groove (그루브형 마이크로 히트파이프의 열전달특성에 대한 연구)

  • Suh, Jeong-Se
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.360-364
    • /
    • 2001
  • Numerical Aanlysis is made on the thermal performance of micro heat pipe in a axial flat grooved channel. The flow of liquid and vapor is investigated in trapezoidal grooves and the effect of variable shear stress along the interface of the liquid and vapor considered. The results from this study are obtained in the axial variation of pressure difference between vapor and liquid, contact angle, velocity of liquid and vapor and so forth. In addition, maximum heat transport capacity of micro-heat pipe is provided by varying the operation temperature, and compared with that from Schneider and Devos's model in which the interfacial shear stress is neglected.

  • PDF

Experimental study on the working characteristic of a heat pipe with combined wick (조합형 윅을 사용한 히트파이프의 작동특성에 관한 실험적 연구)

  • 홍진관;부준홍;정원복
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.236-243
    • /
    • 1999
  • Aluminum/Freon-22 heat pipes were manufactured and tested which have a special wick geometry combining axial groove and screen mesh. There were 14 axial grooves in a cross-section and these were covered by two layers of 350 mesh screens to enhance the thermal performance. The performance test was conducted by varying the thermal load and tilt angle. Furthermore, the operation limits and overall heat transfer coefficient were investigated. The experimental results will be useful in a variety of applications, especially in design and manufacturing of a high-efficiency heat exchanger and energy recovery systems.

  • PDF

Static Characteristics and Design of Hemispherical Aerodynamic Bearing (반구형 공기동압베어링의 정적 특성 및 설계)

  • 김승곤;김준영;최환영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.217-224
    • /
    • 1997
  • Static characteristics of hemispherical aerodynamic bearing is studied theoretically. In this paper nonlinear equation of second order considering compressibility and slip effect of air is calculated by Newton-Raphson method. Results indicate that axial load capacity has maximum value when the inclination angle of groove is about 30$\circ$, the ratio of groove clearance to ridge clearance is two. We also present the design method of hemispherical Aerodynamic bearing based on it's load capacity taking into account manufacturing and assembling viewpoint.

  • PDF

Lubrication Performance Analysis and Experiment of a Low-Speed Dry Gas Seal having an Inner Circular Groove (내부 원형 그루브를 갖는 저속 드라이 가스 시일의 윤활 성능해석 및 실험)

  • Lee, An-Sung;Kim, Jun-Ho
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2005
  • In this study a general Galerkin FE lubrication analysis method was utilized to analyze the complex lubrication performance of a spiral groove seal having an additional inner circular groove, which was designed for a chemical process mixer operating at a low speed of the maximum 500 rpm. Equilibrium seal clearance analyses under varying outer pressure revealed that the seal maintains a certain levitation seal clearance under the outer pressure of more than about 1.5 bar, regardless of a rotating speed. Also, under the normal outer pressure of 11 bar, the axial stiffness of the seal was predicted to have a high value of more than 7.0 e + 07 N/m, regardless of a rotating speed and thereby, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting. A seal levitation test rig was designed and constructed. Experimental results at 500 rpm agreed well with analytical predictions and the applied lubrication analysis method was verified.

Variation of Inter-Ring Gas Pressure in Internal Combustion Engine (내연기관 피스톤 링들 사이 가스압력 변동)

  • Yun, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF

The Static Equivalent Radial Load under the Moment and Radial Force for the Deep Groove Ball Bearings (모멘트 하중을 고려한 깊은 홈 볼 베어링의 정등가 하중에 관한 연구)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.94-99
    • /
    • 1998
  • Generally not only the radial load but also the moment may be applied to the ball bearings for a shaft system. However it has been difficult to determine the static equivalent load because there is the radial static equivalent equation only for the axial and radial force on the bearings. In this paper, the same static equivalent radial load which makes the maximum contact force at the interface between the ball and groove as the applied radial force and moment generate is calculated under the condition that the radial force and the moment are applied to the bearings simultaneously. The relation between the static equivalent load and applied force is studied. Therefore the simple and effective equation for the static equivalent radial load of the radial load and moment is proposed for the deep groove ball bearings.

Dynamic Characteristics of a Coupled Journal and Thrust Hydrodynamic Bearing in a HDD Spindle System Due to Groove Location (HDD 스핀들 시스템에 사용되는 저널과 트러스트가 결합된 유체 동압 베어링의 홈 위치에 따른 동특성 해석)

  • 윤진욱;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.304-311
    • /
    • 2001
  • This research numerically analyzes the dynamic characteristics of a coupled journal and thrust hydrodynamic bearing due to its groove location which has the static load due to the weight of a rotor in the axial direction and the dynamic load due to its mass unbalance in the radial direction. The Reynolds equation is transformed to solve a plain member rotating type of journal bearing(PMRJ), a grooved member rotating type of journal bearing (GMRJ), a plain member rotating type of thrust bearing (PMRT) and a grooved member rotating type of thrust bearing (GMRT). FEM is used to solve the Reynolds equations in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or floating height of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the groove location affects the pressure distribution in the fluid film and consequently the dynamic performance of a HDD spindle system.

  • PDF

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF