• 제목/요약/키워드: Axial displacement preload

검색결과 12건 처리시간 0.016초

실시간 볼 스크류 열변형 추정에 관한 연구 (A Study on the Real-Time Estimation of Thermal Displacement for a Ball Screw)

  • 김수광;류승호;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.88-93
    • /
    • 1995
  • The ball screw preloaded for high nigidity and accuracy increases frictional resistance, therefore, its temperature and positioning error rise. In this paper, 2 diamensional temperature distributions of a ball screw with preload are analyzed according to the rotational speeds and stop times by a finite element method. The theremal behaviors of a ball screw are measured to examine the analyzed datum. The examined results show that the trends of temperature rising and axial distributions in steady state are nearly extimate but the temperature low. The differences of temperature ate seems to be caused by not exact heat transfer coefficients. More than an hour is consumed for calculation by FEM. So the modified lumped method for the real-time estimation of the thermal distribution is proposed. The estimated temperature of a ball serw by the modified lumped method is more exactly estimated than by FEM, nd that method takes less than several millisec. Moreover it can be used to estimate heat transfer coefficients.

  • PDF

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.