• Title/Summary/Keyword: Axial crack

Search Result 303, Processing Time 0.04 seconds

Seismic performance of 1/4-scale RC frames subjected to axial and cyclic reversed lateral loads

  • Bechtoula, Hakim;Sakashita, Masanobu;Kono, Susumu;Watanabe, Fumio
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.147-164
    • /
    • 2005
  • This paper summarizes an experimental study on the seismic behavior of lower stories of a mid-rise reinforced concrete frame building. Two reinforced concrete frames with two stories and one span were tested and each frame represents lower two stories of an 11-story RC frame building. Both frames were designed in accordance with Japanese design guidelines and were identical except in the variation of axial force. The tests demonstrated that the overall load-displacement relations of the two frames were nearly the same and the first-story column shear was closely related to the column axial load. The columns and beams elongated during both of the tests, with the second-floor beam elongation exceeding 1.5% of the beam clear span length. The frame with higher axial loads developed more cracks that the frame under moderate axial load.

Probabilistic Fracture Analysis of Nuclear Reactor Vessel under Pressurized Thermal Shock (가압열충격을 받는 원자로의 확률론적 파괴해석)

  • 김지호;김종욱;김종인;박근배
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.309-316
    • /
    • 2004
  • A probabilistic structural integrity assessment is performed for a reactor pressure vessel under PTS(Pressurized Thermal Shock). A semi-elliptical finite axial crack is assumed to he in the beltline region(either base metal or weld meta)1 of the reactor vessel inside surface. The selected random variables are initial crack depth, neutron fluence on the vessel inside surface, copper, nickel, and phosphorus content of the vessel material, and RT/sub NDT/. The probabilities of crack initiation or vessel failure where the crack is propagated through vessel wall are calculated. The probabilities obtained with random crack size are compared to these obtained with deterministic us. Since the failure function cannot to explicitly by selected by selected random variables, Monte Carlo Simulation is applied to perform probabilistic analysis The influence of the amount of neutron fluence is also examined to assess the structural reliability for vessel life time.

  • PDF

Fracture Criterion and Fatigue Crack Growth Behavior of Rail Steel Under Mode I & Mixed Mode Loading (단일 및 혼합모드 하중하에서의 레일강의 파괴조건 및 피로균열진전거동)

  • Kim, Jung-Kyu;Lee, Jong-Sun;Kim, Chul-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1039-1047
    • /
    • 1999
  • It is necessary to evaluate the fatigue behavior of rail steel under the multi-axial stress state to assure the railway vehicle's safety. For this purpose, the stress analysis to investigate the crack initiation criteria, static failure and fatigue behavior under mixed-mode are performed. The stress analysis results show that the initiation of the transverse fissure depends on the maximum shear stress below the surface. For the mixed mode, the fatigue crack growth behavior which is represented by the projection crack length and comparative S.I.F, ${\Delta}K_v$, shows the more conservative results. Also, its rate is lower than that of the case of the mode I, and this difference decreases with increasing the stress ratio, R.

An Experimental Study on the Fracture Toughness of Middle Carbon Steel (중탄소강(中炭素鋼)의 파속인성치(破續靭性値)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Shim, Kwan-Sik
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.69-75
    • /
    • 1982
  • The fracture of a hot rolled SM 45C steel plate was investigated for various crack ratio, thickness and loading point using the method of J-integral. It was found that the stable crack growth increased as the thickness and crack ratio of the specimen. The results are summerized as follows. 1. The more crack ratio increase, the less fracture toughness tend to. 2. Considering fracture toughness, a thin specimen is stronger a thick one. 3. Considering only the bending of specimen without thickings of the axial direction, we can get $J_{1c}$ value decreased about 10 percentage within the scope of experimental crack ratio.

  • PDF

Geometric Characteristic of Wall-thinning Defect Causing Circumferential Crack in Pipe Elbows (원주방향 균열이 발생되는 곡관 감육부의 형상적 특성)

  • Kim, Jin Weon;Lee, Sung Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • The objective of this study is to classify the geometry of wall-thinning defect that causes a circumferential crack in the pipe elbows subjected to internal pressure. For this objective, first of all a criterion to determine the occurrence of circumferential cracking at wall-thinned area was developed based on finite element simulation for burst tests of pipe elbow specimens that showed axial and circumferential cracking at wall-thinned area. In addition, parametric finite element analysis including various wall-thinning geometries, locations, and pipe geometries was conducted and the wall-thinning geometries that initiate circumferential crack were determined by applying the criterion to the results of parametric analysis. It showed that the circumferential crack occurs at wall-thinning defect, which has a deep, wide, and short geometry. Also, it is indicated that the pipe elbows with larger radius to thickness ratio are more susceptible to circumferential cracking at wall-thinned area.

Crack Energy and Governing Equation of an Extensible Beam with Multiple Cracks (다중 균열을 갖는 신장 보의 균열 에너지와 지배방정식)

  • Shon, Sudeok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

The structure optimization of a lock nut (풀림방지용 Lock Nut 구조 최적화)

  • Cheong, Kwang-Yeil;Park, Tae-Won;Jung, Sung-Pil;Chung, Won-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.646-651
    • /
    • 2008
  • Bolts and nuts are widely used to fasten each mechanical part together in the machines and structures as vital elements. The primary role of bolts and nuts is keeping its axial force against the large external force and vibration. In this study, a lock nut using a spring was developed to maintain axial force. When the lock nut was made, crack occurred in the process of manufacturing the lock nut. Thus, optimized structure of lock nut was found by using the design of experiments. Lastly, the prototype of the optimized lock nut was created, and then the optimization result was verified by comparing results of the initial model and optimized model.

  • PDF

Fracture Characteristics of D 3507 and D 3631 City Gas Steel Pipes (도시가스용 D3507 및 D3631 강관의 파괴특성)

  • 박재학;김한국;신규인;김만원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 2001
  • It is noted that KS D 3507 pipe steel has several problems when it is used as a city gas pipe at medium pressure. So new pipe steel, KS D 3631, was developed in order to be used as a pipe for medium and low pressure and now it is being substituted for D 3507. In this study, several mechanical tests, such as tensile test, microhardness test, and Charpy impact test were conducted to get material properties of D 3507 and D 3631 pipe steels. And also microstructures at the weld and heat affected zones were observed for the two materials. From the Charpy test results $K_{IC}/$ was estimated for the upper and lower shelf and the critical crack length is calculated for supposed axial semi-elliptical surface cracks. And the burst pressure is estimated as a function of wear depth for a defective D 3631 pipe by using the finite element method. The burst pressure is also calculated for pipes with an axial crack by using the published equations.

  • PDF

Improvement of Durability and Reliability by Developing a Bi-axial Test Process of Road Wheel (차량 로드 휠의 복합축 평가 프로세스 구축을 통한 내구신뢰성 강건화 및 주행안정성 향상)

  • Chung, Soo Sik;Yoo, Yoen Sang;Kim, Dae Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • The steel road wheel on ventilation holes was cracked in the vehicle durability test. But the component durability test by uni-axial, CFT(Cornering Fatigue Test) and RFT(Radial Fatigue Test) had been satisfied. That is, the uni-axial component test could not forecast the crack of vehicle. Therefore this study developed the bi-axial test mode to reflect a vehicle condition(to reflect both vertical and lateral force simultaneously) based on real load data which was measured in Europe and China and developed CAE simulation too. It reproduced the cracks same as vehicle's and verified by bi-axial test machine in the LBF(Fraunhofer Institute for Structural Durability and System Reliability) durability research center in Germany. Finally this the durability CAE simulation by using HMC(Hyundai Motor Company)'s the bi-axial test mode predicts feasibly the steel wheel's durability performance before vehicle durability test.