• Title/Summary/Keyword: Axial crack

Search Result 303, Processing Time 0.025 seconds

An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws

  • Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.541-557
    • /
    • 2015
  • This research aims to analyze the fracture coalescence characteristics of brittle sandstone specimen ($80{\times}160{\times}30mm$ in size) containing various flaws (a single fissure, double squares and combined flaws). Using a rock mechanics servo-controlled testing system, the strength and deformation behaviours of sandstone specimen containing various flaws are experimentally investigated. The results show that the crack initiation stress, uniaxial compressive strength and peak axial strain of specimen containing a single fissure are all higher than those containing double squares, while which are higher than those containing combined flaws. For sandstone specimen containing combined flaws, the uniaxial compressive strength of sandstone increase as fissure angle (${\alpha}$) increases from $30^{\circ}$ to $90^{\circ}$, which indicates that the specimens with steeper fissure angles can support higher axial capacity for ${\alpha}$ greater than $30^{\circ}$. In the entire deformation process of flawed sandstone specimen, crack evolution process is discussed detailed using photographic monitoring technique. For the specimen containing a single fissure, tensile wing cracks are first initiated at the upper and under tips of fissure, and anti-tensile cracks and far-field cracks are also observed in the deformation process; moreover anti-tensile cracks usually accompanies with tensile wing cracks. For the specimen containing double squares, tensile cracks are usually initiated from the top and bottom edge of two squares along the direction of axial stress, and in the process of final unstable failure, more vertical splitting failures are observed in the ligament region. When a single fissure and double squares are formed together into combined flaws, the crack coalescence between the fissure tips and double squares plays a significant role for ultimate failure of the specimen containing combined flaws.

Variation of Axial Tension-Compression Fatigue Characteristics by UNSM on Ti-6Al-4V (Ti-6Al-4V재의 UNSM처리에 의한 축인장압축피로특성변화)

  • Suh, Chang-Min;Cho, Sung-Am;Pyoun, Young-Sik;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • The present study makes three original contributions to nanoskinned Ti-6Al-4V materials. The nanoskins were fabricated on Ti-6Al-4V material using various surface treatments: deep rolling (DR), laser shot peening (LSP), and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular in industrial fields. A fatigue strength comparison at up to 106 cycles was conducted on these nanoskinned Ti-6Al-4V materials. Fatigue tests were carried out using MTS under axial loading tension-compression fatigue (R = -1, RT, 5 Hz, sinusoidal wave). The analysis of the crack initiation patterns in the nanoskinned Ti-6Al-4V materials found an interior originating crack pattern and surface originating crack type. Microscopic observation was mainly used to investigate the fatigue fractured sites. These surface modification techniques have been widely adopted, primarily because of the robust grade of their mechanical properties. These are mainly the result of the formation of a large-scale, deep, and useful compressive residual stress, the formation of nanocrystals by the severe plastic deformation (SPD) at the subsurface layer, and the increase in surface hardness.

Fatigue Crack Growth Equation considered the Effect of Stress Ratio (응력비의 영향을 고려한 표면피로균열의 균열성장식)

  • 강용구;김대석
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.39-49
    • /
    • 1998
  • In this work, fatigue tests by axial loading were carried out to investigate the effect of stress ratio on the growth behaviors of surface fatigue crack for SM45C steel and Al 2024-T4 alloy. The growth behaviors of surface crack have been monitored during fatigue process by measuring system attached CCTV and monitor. When the growth rates of surface crack were investigate by the concept of LEFM based on Newman-Raju's .DELTA.K, the dependence of stress ratio appears both SM45C steel and Al 2024-T4 alloy. Therefore, modified stress intensity factor range, .DELTA.K' [=(1+R)/sup n/.DELTA.K] are intorduced to eliminate the dependence of stress ratio. Using .DELTA.K', it is found that the dependence of stress ratio disappears both SM45C steel and Al 2024-T4 alloy.

  • PDF

ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP (부착응력-상대슬립을 이용한 휨균열폭 산정)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

The Effect of Overload Variation on the Fatigue Crack Behavior at the Axial Direction Hole Defects (과대하중변화가 축방향 원공결함의 피로균형거동에 미치는 영향)

  • 송삼홍;김민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.829-832
    • /
    • 1997
  • It is difficult to explain the effects of complex variable loading experienced by the machine and the structure only with the studies of the single-overload itself. Hence, it is thought that the variation of overload-holding time are required to explain the effects more clearly. The effects of the overload were analyzed by means of the crack retardation, and the fractography on retardation zone. A characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force. Rotary bending fatigue tests were performed with the circular shaft which has two hole defects.

  • PDF

Strength and Crack Growth Computation for Various types of Stringers for Stiffened Panels using XFEM Techniques

  • Krishna, Lok S;Reshma, G;Dattaguru, B
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.7-15
    • /
    • 2020
  • In this paper the crack growth, modeling, and simulation of the stiffened and un-stiffened cracked panels presented using commercially available finite element software packages. Computation of stresses and convergence of stress intensity factor for single edge notch (SEN) specimens carried out using the finite element method (FEM) and extended finite element method (XFEM) and compared with an analytical solution. XFEM techniques like cohesive segment method and LEFM using virtual crack closure technique (VCCT), used for crack growth analysis and presented results for un-stiffened and stiffened panels considering various crack domain. The non-linear analysis considering both geometric and material non-linearity on stiffened panels with various stringers like a blade, L, inverted T and Z sections the results were presented. Arrived at the optimum stringer section type for the considered panel under axial loading from the numerical analysis.

Stress Corrosion Crack Growth Evaluation in Primary Loop of Nuclear Power Plant (원전 주배관의 응력부식 가상결함 성장에 대한 잔류응력 영향 평가)

  • Yang, J.S.;Park, C.Y.;Yoon, K.S.;Kang, S.Y.;Oho, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.274-277
    • /
    • 2004
  • The most important mode of subcritical crack growth is primary water stress corrosion crack, which was the reported mechanism from the root cause analysis of the crack in the bimetallic welds. Stress corrosion crack growth evaluations was carried out for several flaw shapes of both axial and circumferential flaws, using the steady-state stresses including residual stresses. This evaluation considered the possibility of additional flaws in the primary loops of nuclear power plant, even though no such flaws have been identified by Ultrasonic Test. Consequently, Results show that the predicted flaw sizes will determine acceptability for continued service and maintenance.

  • PDF

Experimental and Analytical Study on the Burst Pressure of Steam Generator Tubes with T-type Combination Cracks (증기발생기 전열관에 존재하는 T-형 복합 균열의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.38-43
    • /
    • 2005
  • Several nuclear power plants reported that they often found the combination cracks, which consist of longitudinal and circumferential cracks in the tubes. For the burst pressure of a tube with a single longitudinal or circumferential crack several experimental equations have been proposed in published literatures. But for the combination crack appropriate fracture criterion has not been proposed yet. In this study the burst pressures of a tube with a longitudinal crack or a T-type combination crack consisting of longitudinal and circumferential cracks were obtained experimentally and analytically. Fracture parameters such as crack opening angle (COA) were investigated by using elastic plastic analysis. Also the burst pressure far a T-type combination crack located near a tubesheet was considered to develop a length-based criterion. Because most of the axial, circumferential or combination cracks initiate in roll transition zone near the tubesheet.

Shear Deformation based on the Biaxial Tension-Compression Theory in Prestressed Concrete Members applied by Axial Loading (이축인장압축장이론에 기반한 PSC보의 전단변형)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • ASCE-ACI Committee 426 and 445, on Shear and Torsion, well noted in their report that recent research work regarding shear and torsion had been devoted primarily to members. But it was not logical approach of PSC members applied by axial force based on the shear deformation in web element. And it was not included that the effect of axial is to shift the shear strain(or crack width) in the web element versus the applied shear curve up or down by the amount by which the biaxial tension-compression state varies. The shear strength also increases or decreases, so that the change in shear strain at service load due to the presence of axial load is to some extent changed. Generally, in corresponding beams the shear strain at service load is less in the beam subject to axial compression and greater in the beam subject to axial tension, than in the beam without axial load. In particular, however, no research were available on the shear deformation in shear of PSC members with web reinforcement, subject to axial force in addition to shear and bending. Therefore, this study was basically performed to develop the program for the calculation of the shear deformation based on the shear effect of axial force in prestressed concrete members.

  • PDF