• 제목/요약/키워드: Axial controller

검색결과 64건 처리시간 0.043초

퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어 (Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller)

  • 신두진;허욱열
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권8호
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

다축 CNC 시스템의 통합형 제어기 설계 (Integrated Controller Design for Multi-Axis CNC Systems)

  • 이학철;지성철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.93-102
    • /
    • 2006
  • This paper proposes a controller design analysis for three-axis CNC systems considering both contouring and tracking performance. The proposed analysis inclusively combines axial controllers for each individual feed drive system together with cross-coupling controller at the beginning design stage as an integrated manner. These two controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy. Computer simulation is performed and the results show the validity of the proposed methodology. Further, the results can be used as a basic guideline in systematic and comprehensive controller design for multi-axis CNC systems.

다축 시스템의 디지틀 윤곽제어 (Digital Contouring Control of Multi-axial System)

  • 이건북;소의열;조원익;최장욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.466-471
    • /
    • 1996
  • This work is concerned with the development of digital contouring controller formulti-axial servosystems. Digital optimal contouring controller is proposed to coordinate each of the controllers of multiple feed drives and specifically improve the controuring performance. The optimal control formulation includes the contour error explicity in the performance index to be minimized. The contouring control is exercised for straight line and circular contours. Substantial improvement in contouring perfomance is obtained for a range of contouring conditions. Both steady state and transient error measures have been considered. The simulation study presented has estiblished the potential of the proposed controller to improve contourning perfomance.

  • PDF

고정밀 운동제어를 위한 2축 서보메커니즘의 최적튜닝 (Optimal Tuning of Bi-axial Servomechanisms for High-Precision Motion Control)

  • 성철모;정성종
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.44-51
    • /
    • 2008
  • In this paper, the optimal tuning of a cross-coupled controller linked with the feedforward controller is studied to reduce contouring and tracking errors of a bi-axial servomechanisms by using the previously developed integrated tuning method. The CCC system for an arbitrary curve, which is combined with the feedforward controller, is formulated by a state-space based on a series of linear motion trajectories. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including relevant controller parameters of the servo. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed control and tuning system.

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어 (Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control)

  • 원위위;최미화;양석란;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

An Integrated Approach to the Analysis and Design of a Three-Axis Cross-Coupling Control System

  • Jee, Sung-Chul;Lee, Hak-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.59-63
    • /
    • 2007
  • We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an integrated manner. These two types of controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional contour error model and includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the validity of the proposed methodology. The performance variation was investigated under different operating conditions and controller gains, and a design range was elicited that met the given performance specifications. The results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental results confirmed the usefulness of the proposed control system in terms of contouring accuracy.

윤곽제어 및 위치추종 성능을 고려한 3축 연동제어 시스템 설계 (Design of a 3-Axis Cross-Coupling Control System Considering Both Contouring and Tracking Performance)

  • 이학철;지성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.137-138
    • /
    • 2006
  • This paper proposes a controller design analysis for three-axis CNC systems considering both contouring and tracking performance. The proposed analysis inclusively combines axial controllers for each individual feed drive system together with cross-coupling controller at the beginning design stage as an integrated manner. These two controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy. Computer simulation is performed and the results show the validity of the proposed methodology.

  • PDF

Design of a Nuclear Reactor Controller Using a Model Predictive Control Method

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Sun-Mi;Lee, Yoon-Joon;Jang, Jin-Wook;Lee, Ki-Bog
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2080-2094
    • /
    • 2004
  • A model predictive controller is designed to control thermal power in a nuclear reactor. The basic concept of the model predictive control is to solve an optimization problem for finite future time steps at current time, to implement only the first optimal control input among the solved control inputs, and to repeat the procedure at each subsequent instant. A controller design model used for designing the model predictive controller is estimated every time step by applying a recursive parameter estimation algorithm. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), was used to verify the proposed controller for a nuclear reactor. It was known that the nuclear power controlled by the proposed controller well tracks the desired power level and the desired axial power distribution.

가변용량형 사판식 액셜피스톤 펌프의 모델링 및 사판 강인 제어기 설계 (Modeling and Robust Controller Design of a Swash Plate for Swash Plate Type Variable Displacement Axial Piston Pump)

  • 박성환;박용호;이지민;김종식
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.75-81
    • /
    • 2008
  • A robust controller is proposed for regulating effectively the pressure of control cylinder of swash plate type variable displacement axial piston pump. In order to design a precise and robust pressure control system, a mathematical model for swash plate control system is identified by the signal compression method. Based on the identified mathematical model, an $H_{\infty}$ robust swash plate controller is designed which is robust to the variation of the load pressure. The precise and robust swash plate control characteristics are verified by experiments.