• 제목/요약/키워드: Axial compressor

검색결과 182건 처리시간 0.021초

로터리 컴프레서 진동원 검출을 위한 인텐시티 기법 (Vibration Intensity Method to Detect Vibration Source of Rotary Compressor)

  • 김희철;이동연;이화조;심재술
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3398-3405
    • /
    • 2011
  • 본 논문에서는 공조용 로타리 컴프레서에서 발생하는 진동을 줄이기 위하여 진동 인텐시티를 이용하는 방법을 다룬다. 일반적으로 진동 인텐시티는 진동의 흐름을 통해서 소음원을 그래픽적으로 보여주기 위한 좋은 도구이다. 진동 인텐시티의 유용성을 보이기 위하여, 동일한 평면 위에서 동일한 방향(z 방향)을 향하도록 위치한 세밀하게 설계된 단축 3개의 가속도계를 이용하여 정상적인 컴프레서와 문제가 있는 컴프레서에 대해 진동 인텐시티를 측정하였다. 본 논문에서 컴프레서의 표면에서 진동원 위치를 찾을 수 있었고, 문제가 되는 3kHz ~ 6.3kHz의 주된 소음원은 컴프레서의 Bottom 부분에서 발생하는 것으로 밝혀졌고, 베인 슬롯의 열 변형에 의한 소음임을 알 수 있다.

스털링 엔진에 대한 스크롤 팽창기 : 압축기의 적용성 (Applicability of Scroll Expander-compressor for Stirling Engine)

  • 김성준;김현진;김영민
    • 설비공학논문집
    • /
    • 제21권2호
    • /
    • pp.94-102
    • /
    • 2009
  • Conceptual design of scroll expander and scroll compressor for 10kW-class Stirling engine utilizing solar energy as heat source has been carried out to estimate the applicability of scroll mechanism for Stirling cycle. CO2 was chosen as working fluid, since it has lower expansion index and higher density among probably usable gases. Gas temperature at the expander inlet was set at $700^{\circ}C$, and that at the compressor inlet was at $40^{\circ}C$. System efficiency reached maximum at the pressure ratio of about 2.5, and the peak efficiency increased with increasing high side pressure. Due to safety concern, the pressure condition of 6 MPa/2.5 MPa was chosen as design condition. Orbiting scroll members for the expander and compressor were designed to have double-sided structure in order to reduce the overall scroll size and to cancel out the axial gas forces acting on the orbiting scroll base plate. By parametric study on the scroll profile, smaller possible size for the scroll members was obtained. With the shaft speed of 3600rpm, the shaft output of the designed scroll expander was calculated to be 45.4kW, while input power for the scroll compressor was 34.5kW, yielding 10.9kW for the output power of the Stirling engine. System efficiency was estimated to be about 7.3%, and overall efficiencies of the scroll expander and compressor were around 84.1% and 88.3%, respectively.

팁 간극 영향으로 인한 원심 압축기 성능특성 시험연구 (Experimental Study on the Effect of Tip Clearance of a Centrifugal Compressor)

  • 차봉준;임병준;양수석;이대성
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.30-37
    • /
    • 2001
  • The experimental study on the effect of axial clearance between the tip of impeller blades and stationary shroud has been performed. The investigated compressor, which is a part of a small auxiliary power unit engine, consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. It was designed for a total pressure ratio of 4.3 and an efficiency of $77\%$ at design speed of 60,000 rpm. The experiments are carried out in an open-loop centrifugal compressor test rig driven by a turbine. For the four different clearance ratios Cr(clearance/impeller tip width) of 6.25, 10.93, 15.60 and 20.30 percent, the overall performance data are obtained at $97\%,\;90\%$ and $80\%$ of the design speed. The results show the overall pressure ratio decrease of $7.7\%$ and the efficiency loss of $8.7\%$ across the variation of clearance ratio near the design speed. It also indicates that the influence of tip clearance became weaker as the flow rate is reduced and the stable operating range is not significantly influenced by the change of clearance ratio.

  • PDF

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.

기술논문 : 헬리콥터용 터보샤프트엔진 2 단 축류압축기 성능시험 (Technical Papers : Performance Test of a Two Stage Axial Compressor of a Turboshaft Engine for Helicopters)

  • 김춘택;김진한;양수석;이대성
    • 한국항공우주학회지
    • /
    • 제30권3호
    • /
    • pp.139-145
    • /
    • 2002
  • 이륙중량 4000kg, 10-12인승급 다목적 헬리콥터에 적용가능한 엔진 개량 개발을 목표로 기존 헬리콥터 엔진을 개량대상으로 선정하고 이러한 다목적 헬기의 요구조건에 부합하기 위해 기존 엔진의 요소부품을 재설계하였다. 첫 단계로 최소변경으로 720 hp에서 840 hp로 출력을 증강시키기 위하여 2단 축류압축기의 기존 입구 유도익을 제거하고 익현의 길이를 증가하여 유량 및 압축비를 증가시킴으로써 출력 증강을 얻도록 재설계를 수행하였다. 이러한 2단 축류압축기의 성능을 검증하기 위하여 두 번째 단 단독시험 및 전체 2단에 대한 성능시험이 수행되었으며 첫 번째 단의 성능은 이 결과로부터 도출되었다. 성능시험결과 전체 2단 압축기는 유량 3.088 kg/s에서 압력비 2.14, 단열효율 88%의 성능을 갖는 것으로 나타났으며 압축기 출구의 압력 및 온도 분포를 레이크를 이용하여 측정하였다.

1단 축류압축기 내부 유동의 2차원 비점성 해석 (2-D Inviscid Analysis of Flow in One Stage of Axial Compressor)

  • 김현일;박준영;백제현;정희택
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.38-46
    • /
    • 2000
  • It has been indicated that the rotor/stator interaction has distinct causes of unsteadiness, such as the viscous vortex shedding, wake/stator interaction and potential rotor/stator interaction. In this paper, the mechanism of unsteady potential interaction in one stage axial compressor is numerically investigated for blade row ratio 1:1 and 2:3 at design point and for blade row ratio 2:3 at off-design point in two-dimensional view point. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting(FVS) and Cubic spline interpolation is applied on zonal interface. In this study the flow unsteadiness due to potential interaction are found to be larger in blade row ratio 2:3 than in 1:1. The total pressure rise in blade row ratio 2:3 is closer to the real value in design point than that in 1:1. The change of unsteady pressure amplitude according to the variation of stator exit pressure is very small.

  • PDF

軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究 (A study on the deviation angle of the rotating blade row in an axial- flow compressor)

  • 조강래;방영석
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1407-1414
    • /
    • 1988
  • 본 연구에서는 저자들에 의해 이미 개발된 경계유선수정법에 의한 B-B 유동계 산을 통해 익열의 편차각을 계산하고 기존의 예측방법에 의한 결과와 비교 검토하여 압축성 및 3차원 비축대칭성의 효과를 검토하였다.

터보 압축기 다단 회전축계의 진동 및 안정성 연구 (Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor)

  • 서정석;강성환;박상윤;안창기;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석 (Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis)

  • 강명수;윤완노;김준성
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF

터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part II : 피동 고속 압축기 피니언-임펠러 로터-베어링 시스템 (Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part II : A Driven High-Speed Compressor Pinion-Impeller Rotor-Bearing System)

  • 이안성;정진희
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1042-1049
    • /
    • 1999
  • In the Part I has been reported a rotordynamic analysis of the driving motor-bull gear rotor-bearing system of a turbo-chiller. In this study, Part II, a rotordynamic analysis is performed with the turbo-chiller compressor pinion-impeller rotor system supported on two fluid film bearings. The pinion-impeller rotor system is driven to a rated speed of 14,600 rpm through a speed-increasing pinion-bull gear. It is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support bearings, the generalized forces of the gear action as well as the rotor itself. The two support bearings, partial and 3-axial groove bearings, are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the compressor pinion-impeller rotor-bearing system is carried out to evaluate its stability, whirl natural frequencies and mode shapes, and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regardless of operating conditions, i.e., loads and operating speeds.

  • PDF