• 제목/요약/키워드: Axial compression

검색결과 840건 처리시간 0.022초

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

Axial compression behavior of double-skinned composite tubular columns under pure compression on concrete cores

  • Lee, Jeonghwa;Byun, Namju;Kang, Young Jong;Won, Deok Hee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.431-445
    • /
    • 2022
  • A double-skinned composite tubular (DSCT) column, which is an internally confined concrete-filled tubular column with a hollow section, has been developed for efficient use of materials that reduce self-weight and enhance seismic performance. It exhibits excellent material behavior with ductility owing to the confinement induced by outer and inner steel tubes. This study conducted axial compression tests considering the effects of steel tube thickness and hollow diameter ratios of DSCT columns on the material behavior of confined concrete under pure axial compression on concrete cores. From the axial compression tests, various combinations of outer and inner tube thicknesses and two different hollow section ratios were considered. Additionally, confined concrete material behavior, axial strength, failure modes, and ductility of DSCT columns were evaluated. Based on this study, it was concluded that the tests show a good correlation with peak strength and shapes of nonlinear stress-strain curves presented in literature; however, the thinner outer and inner steel tubes may reduce the ductility of DSCT columns when using thinner outer and inner tubes and higher confined stress levels. Finally, the minimum thickness requirements of the steel tubes for DSCT columns were discussed in terms of strength and ductility of test specimens.

Behaviors of UHPC-filled Q960 high strength steel tubes under low-temperature compression

  • Yan, Jia-Bao;Hu, Shunnian;Luo, Yan-Li;Lin, Xuchuan;Luo, Yun-Biao;Zhang, Lingxin
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.201-219
    • /
    • 2022
  • This paper firstly proposed high performance composite columns for cold-region infrastructures using ultra-high performance concrete (UHPC) and ultra-high strength steel (UHSS) Q960E. Then, 24 square UHPC-filled UHSS tubes (UHSTCs) at low temperatures of -80, -60, -30, and 30℃ were performed under axial loads. The key influencing parameters on axial compression performance of UHSS were studied, i.e., temperature level and UHSS-tube wall thickness (t). In addition, mechanical properties of Q960E at low temperatures were also studied. Test results revealed low temperatures improved the yield/ultimate strength of Q960E. Axial compression tests on UHSTCs revealed that the dropping environmental temperature increased the compression strength and stiffness, but compromised the ductility of UHSTCs; increasing t significantly increased the strength, stiffness, and ductility of UHSTCs. This study developed numerical and theoretical models to reproduce axial compression performances of UHSTCs at low temperatures. Validations against 24 tests proved that both two methods provided reasonable simulations on axial compression performance of UHSTCs. Finally, simplified theoretical models (STMs) and modified prediction equations in AISC 360, ACI 318, and Eurocode 4 were developed to estimate the axial load capacity of UHSTCs at low temperatures.

Research on seismic performance of regionally confined concrete circular column with trapezoid stirrups

  • Longfei Meng;Hao Su;Yanhua Ye;Haojiang Li
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.587-600
    • /
    • 2024
  • In order to investigate the seismic performance of regionally confined concrete circular column with trapezoid stirrups (TRCCC) under high axial compression ratio, the confinement mechanism of regionally confined concrete was analyzed. Three regionally confined concrete circular columns with trapezoid stirrups were designed, and low cyclic loading tests were conducted at three different axial compression ratios (0.9, 1.1, 1.25) to study the failure mode, hysteresis curve, skeleton curve, deformation capacity, stiffness degradation and energy dissipation capacity of the specimens. The results indicate that the form of regional confinement concrete provides more uniform confinement to the normal confinement, and the confinement efficiency at the edges is 1.4 times that of normal confined concrete. The ductility coefficients of the specimens were all greater than 3 under high axial compression ratios, and the stiffness and horizontal bearing capacity increased with the increase of axial compression ratio. Therefore, it is recommended that the code of design specifications can appropriately relax the axial compression ratio limit for TRCCC. Finally, the spacing between stirrups of TRCCC was analyzed using ABAQUS software. The results showed that as the spacing between the stirrups decreased, the cracking load and peak load of TRCCC increased continuously, but the rate of increase decreases.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression

  • Shi, G.;Liu, Z.;Ban, H.Y.;Zhang, Y.;Shi, Y.J.;Wang, Y.Q.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.31-51
    • /
    • 2012
  • Local buckling can be ignored for hot-rolled ordinary strength steel equal angle compression members, because the width-to-thickness ratios of the leg don't exceed the limit value. With the development of steel structures, Q420 high strength steel angles with the nominal yield strength of 420 MPa have begun to be widely used in China. Because of the high strength, the limit value of the width-to-thickness ratio becomes smaller than that of ordinary steel strength, which causes that the width-to-thickness ratios of some hot-rolled steel angle sections exceed the limit value. Consequently, local buckling must be considered for 420 MPa steel equal angles under axial compression. The existing research on the local buckling of high strength steel members under axial compression is briefly summarized, and it shows that there is lack of study on the local buckling of high strength steel equal angles under axial compression. Aiming at the local buckling of high strength steel angles, this paper conducts an axial compression experiment of 420MPa high strength steel equal angles, including 15 stub columns. The test results are compared with the corresponding design methods in ANSI/AISC 360-05 and Eurocode 3. Then a finite element model is developed to analyze the local buckling behavior of high strength steel equal angles under axial compression, and validated by the test results. Following the validation, a finite element parametric study is conducted to study the influences of a range of parameters, and the analysis results are compared with the design strengths by ANSI/AISC 360-05 and Eurocode 3.

The combined reinforcement to recycled aggregate concrete by circular steel tube and basalt fiber

  • Zhang, Xianggang;Zhang, Songpeng;Chen, Xu;Gao, Xiang;Zhou, Chunheng
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.323-334
    • /
    • 2022
  • In order to study the axial compression performance of basalt-fiber reinforced recycled concrete (BFRRC) filled circular steel tubular short columns, the axial compression performance tests of seven short column specimens were conducted to observe the mechanical whole-process and failure mode of the specimens, the load-displacement curves and the load-strain curves of the specimens were obtained, the influence of design parameters on the axial compression performance of BFRRC filled circular steel tubular short columns was analyzed, and a practical mathematical model of stiffness degradation and a feasible stress-strain curve equation for the whole process were suggested. The results show that under the axial compression, the steel tube buckled and the core BFRRC was crushed. The load-axial deformation curves of all specimens show a longer deformation flow amplitude. Compared with the recycled coarse aggregate (RCA) replacement ratio and the basalt fiber dosage, the BFRRC strength has a great influence on the peak bearing capacity of the specimen. The RCA replacement ratio and the BFRRC strength are detrimental to ductility, whereas the basalt fiber dosage is beneficial to ductility.

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.