• Title/Summary/Keyword: Axial beam

Search Result 757, Processing Time 0.025 seconds

Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations (다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중)

  • 이성희;김형열;박기태;박대효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.523-534
    • /
    • 2002
  • Free vibration and buckling analysis of multi-delaminated composite beam-columns subjected to axial compressive load is performed in the present study In order to investigate the effects of multi-delaminations on the natural frequency and the elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-dclamination tip. The characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delauunated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and the elastic buck)ing load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

The Broad-beam CT Image Reconstruction from Simulator Images (모의치료(Simulation) 영상을 이용한 Broad-beam CT 영상 구현)

  • Yi, Byong-Yong
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • Purpose : To generate the axial, coronal and sagittal images from conventional simulation images, as a preliminary study of broad-beam simulator CT. Methods and Materials : Volumetric filtered back-projection was performed using 90 sheets of films from conventional simulator for every $4^{\circ}$ gantry angle. Two mAs exposure condition for 120kvp beam qualify at SFD 140cm was given to each film. Outside the silhouette portion was removed and scatter component was deconvolved before back-projection. Results : The axial, the sagittal and the coronal images with same spatial resolutions over all direction could be obtained. But image quality was very poor. Conclusion : CT images could be obtained using broad-beam. Scatter deconvolution technique was effective for this reconstruction. The fact that same spatial resolutions over all direction tells us the possibility of application of this technique to DRR or Simulator-CT. But the quality of image should be improved for clinical application practically.

  • PDF

Comparison of the condyle-fossa relationship between skeletal class III malocclusion patients with and without asymmetry: a retrospective three-dimensional cone-beam computed tomograpy study

  • Kim, Hyoun Oak;Lee, Won;Kook, Yoon-Ah;Kim, Yoonji
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • Objective: This study investigated whether temporomandibular joint (TMJ) condyle-fossa relationships are bilaterally symmetric in class III malocclusion patients with and without asymmetry and compared to those with normal occlusion. The hypothesis was a difference in condyle-fossa relationships exists in asymmetric patients. Methods: Group 1 comprised 40 Korean normal occlusion subjects. Groups 2 and 3 comprised patients diagnosed with skeletal class III malocclusion, who were grouped according to the presence of mandibular asymmetry: Group 2 included symmetric mandibles, while group 3 included asymmetric mandibles. Pretreatment three-dimensional cone-beam computed tomography (3D CBCT) images were obtained. Right- and left-sided TMJ spaces in groups 1 and 2 or deviated and non-deviated sides in group 3 were evaluated, and the axial condylar angle was compared. Results: The TMJ spaces demonstrated no significant bilateral differences in any group. Only group 3 had slightly narrower superior spaces (p < 0.001). The axial condylar angles between group 1 and 2 were not significant. However, group 3 showed a statistically significant bilateral difference (p < 0.001); toward the deviated side, the axial condylar angle was steeper. Conclusions: Even in the asymmetric group, the TMJ spaces were similar between deviated and non-deviated sides, indicating a bilateral condyle-fossa relationship in patients with asymmetry that may be as symmetrical as that in patients with symmetry. However, the axial condylar angle had bilateral differences only in asymmetric groups. The mean TMJ space value and the bilateral difference may be used for evaluating condyle-fossa relationships with CBCT.

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Cantilever beam vibration sensor based on the axial property of fiber Bragg grating

  • Casas-Ramos, Miguel A.;Sandoval-Romero, G.E.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.625-631
    • /
    • 2017
  • In the fields of civil engineering and seismology, it is essential to detect and tracking the vibrations, and the fiber Bragg gratings (FBGs) are typically used as sensors to measure vibrations. Where, one of the most popular and detailed approaches to use FBGs as vibration sensors involves the use of cantilever beam designs, which adds a mass to measure low and moderate frequencies (from 20 Hz up to 1 kHz) with high sensitivities (greater than 10 pm/g). The design consists of a bending strain in the cantilever that is simultaneously transferred to the FBG, resulting in a shift in the wavelength that is proportional to the strain experienced by the cantilever. In this work, we present the experimental results of a vibration sensor design using a cantilever beam to generate an axial uniform strain in the FBG in-line with the vertical axis, which modifies the cantilever's natural frequency that allows the sensor to have a wide frequency broadband without losing sensitivity. This sensor achieved a sensitivity of about 339 pm/g and a natural frequency of 227.3 Hz. The presented design compared with the traditional cantilever beam-based FBG vibration sensors, has the advantages of a simple design for detection on vibration-sensitive structures and its physical parameters can be easily modified in order to satisfy the requirements of the desired vibration measurements.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Nonlinear FEA of higher order beam resting on a tensionless foundation with friction

  • He, Guanghui;Li, Xiaowei;Lou, Rong
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-116
    • /
    • 2016
  • A novel higher order shear-deformable beam model, which provides linear variation of transversal normal strain and quadratic variation of shearing strain, is proposed to describe the beam resting on foundation. Then, the traditional two-parameter Pasternak foundation model is modified to capture the effects of the axial deformation of beam. The Masing's friction law is incorporated to deal with nonlinear interaction between the foundation and the beam bottom, and the nonlinear properties of the beam material are also considered. To solve the mathematical problem, a displacement-based finite element is formulated, and the reliability of the proposed model is verified. Finally, numerical examples are presented to study the effects of the interfacial friction between the beam and foundation, and the mechanical behavior due to the tensionless characteristics of the foundation is also examined. Numerical results indicate that the effects of tensionless characteristics of foundation and the interfacial friction have significant influences on the mechanical behavior of the beam-foundation system.

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF

Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames

  • Xianggang Zhang;Gaoqiang Zhou;Xuyan Liu;Yuhui Fan;Ercong Meng;Junna Yang;Yajun Huang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.537-543
    • /
    • 2023
  • To study the seismic behavior of recycled aggregate concrete filled circular steel tube (RACFCST) frames, the seismic behavior experiment of RACFCST frame was carried out to measure the hysteresis curve, skeleton curve and other seismic behavior indexes. Moreover, based on the experimental study, a feasible numerical analysis model was established to analyze the finite element parameters of 8 RACFCST frame specimens, and the influence of different variation parameters on the seismic behavior index for RACFCST frame was revealed. The results showed that the skeleton curve of specimens under different axial compression ratios were divided into three stages: elastic stage, elastic-plastic stage and descending stage, and the descending stage was relatively stable, indicating that the specimen had stronger deformation capacity in the descending stage. With the increase of axial compression ratio, the peak bearing capacity of all specimens reduced gradually, and the reduction was less than 5%. With the decrease of beam-column linear stiffness ratio, the peak bearing capacity decreased gradually. With the decrease of yield bending moment ratio of beam-column, the peak bearing capacity decreased gradually, and the decreasing rate of peak bearing capacity gradually accelerated. In addition, compared with the axial compression ratio, the beam-column linear stiffness ratio and the yield bending moment ratio of beam-column had a more significant influence on the peak bearing capacity of RACFCST frame.