• Title/Summary/Keyword: Axial Type Turbine

Search Result 81, Processing Time 0.029 seconds

EFFECTS OF COMPUTATIONAL GRIDS ON NUMERICAL SIMULATION OF TRANSONIC TURBINE CASCADE FLOWFIELDS (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung H.T.;Jung H.N.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

Effects of Computational Grids on Numerical Simulation of Transonic Turbine Cascade Flowfields (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung, H.T.;Jung, H.N.;Seo, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.857-862
    • /
    • 2003
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

  • PDF

An Experimental Study on the Propagated Uncertainties on the Total-to-total Efficiency of an Axial Turbine (축류형터빈 전효율에 파급된 불확도에 관한 실험적연구)

  • 조수용;김은종
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.123-126
    • /
    • 2003
  • The uncertainties generated by measurement parameters are propagated to the uncertainty of total-to-total efficiency on an experiment. The effect of uncertainties’ propagation are analyzed through a turbine performance test. A tested 3-D axial type turbine has a 0.373 degree of reaction at the mean radius and the performance test is conducted at the low pressure and cold temperature status. The uncertainty of turbine inlet and exit total pressure shows the strong propagation effect to the uncertainty of total-to-total efficiency. This means that a high precision pressure measuring system is required to reduce the uncertainty propagated by the pressure. In the uncertainty portion of each measurement parameters to the uncertainty of total-to-total efficiency, the uncertainty by torque is the highest and the uncertainty by RPM is the lowest. In case of the total pressure, the effect of the uncertainty by torque is increased with the increasing RPM. The uncertainty of total pressure at the turbine exit shows more influence to the results than that at the turbine.

  • PDF

The Performance Analysis of a Counter-rotating Tubular Type Turbine with the Number of Runner Vane (러너베인 깃수의 변화에 따른 튜블러형 상반전 수차의 성능해석)

  • Park, Jihoon;Lee, Nakjoong;Hwang, Youngho;Kim, Youtaek;Lee, Youngho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.192.1-192.1
    • /
    • 2010
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this paper, detail studies have been carried out to acquire basic design data of micro counter-rotating hydraulic turbine, output power, head, and efficiency characteristics on various number of runner vane. Moreover, the influences of pressure, tangential and axial velocity distributions on turbine performance are also investigated.

  • PDF

Vibration of bio-inspired laminated composite beams under varying axial loads

  • Tharwat Osman;Salwa A. Mohamed;Mohamed A. Eltaher;Mashhour A. Alazwari;Nazira Mohamed
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.25-43
    • /
    • 2024
  • In this article, a mathematical model is developed to predict the dynamic behavior of bio-inspired composite beam with helicoidal orientation scheme under variable axial load using a unified higher order shear deformation beam theory. The geometrical kinematic relations of displacements are portrayed with higher parabolic shear deformation beam theory. Constitutive equation of composite beam is proposed based on plane stress problem. The variable axial load is distributed through the axial direction by constant, linear, and parabolic functions. The equations of motion and associated boundary conditions are derived in detail by Hamilton's principle. Using the differential quadrature method (DQM), the governing equations, which are integro-differential equations are discretized in spatial direction, then they are transformed into linear eigenvalue problems. The proposed model is verified with previous works available in literatures. Parametric analyses are developed to present the influence of axial load type, orthotropic ratio, slenderness ratio, lamination scheme, and boundary conditions on the natural frequencies of composite beam structures. The present enhanced model can be used especially in designing spacecrafts, naval, automotive, helicopter, the wind turbine, musical instruments, and civil structures subjected to the variable axial loads.

A Study of Operating Forces on a Partially Admitted Turbine Blade (부분분사에 의한 터빈익형에서의 작동력 변화에 관한 연구)

  • Cho, Chong-Hyun;Choi, Hyoung-Jun;Chung, Dae-Hun;Im, Yong-Hoon;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.890-899
    • /
    • 2010
  • An experimental study has been conducted to analyze the operating forces on a partially admitted turbine blade using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The rotational force and axial force on the blade were measured at steady state by moving the blade to the rotational direction. The operating forces were measured at three different nozzle install angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the maximum rotational force was increased when the solidity was decreased and the nozzle install angle was decreased. The axial force was increased by decreasing the nozzle install angle. The reverse axial force was obtained in the partially admitted region when the nozzle install angle was increased to $72^{\circ}$.

Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads

  • Li, Haoran;Hu, Zhiqiang;Wang, Jin;Meng, Xiangyin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • Due to integrated stochastic wind and wave loads, the supporting platform of a Floating Offshore Wind Turbine (FOWT) has to bear six Degrees of Freedom (DOF) motion, which makes the random cyclic loads acting on the structural components, for instance the tower base, more complicated than those on bottom-fixed or land-based wind turbines. These cyclic loads may cause unexpected fatigue damages on a FOWT. This paper presents a study on short-term fatigue damage at the tower base of a 5 MW FOWT with a spar-type platform. Fully coupled time-domain simulations code FAST is used and realistic environment conditions are considered to obtain the loads and structural stresses at the tower base. Then the cumulative fatigue damage is calculated based on rainflow counting method and Miner's rule. Moreover, the effects of the simulation length, the wind-wave misalignment, the wind-only condition and the wave-only condition on the fatigue damage are investigated. It is found that the wind and wave induced loads affect the tower base's axial stress separately and in a decoupled way, and the wave-induced fatigue damage is greater than that induced by the wind loads. Under the environment conditions with rated wind speed, the tower base experiences the highest fatigue damage when the joint probability of the wind and wave is included in the calculation. Moreover, it is also found that 1 h simulation length is sufficient to give an appropriate fatigue damage estimated life for FOWT.

Study of Application of Impulse Turbine with Staggered Blades to Improve the Performance for Wave Energy Conversion (파력발전용 임펄스터빈의 효율 향상을 위한 Staggered Blade의 적용에 대한 연구)

  • Moon, Jae-Seung;Shin, Seung-Ho;Hyun, Beom-Soo;Kim, Gil-Won;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.845-852
    • /
    • 2007
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the impulse turbine with staggered blade to improved performance by numerical analysis using commercial CFD code, FLUENT Maximum value of axial airflow velocity during exhalation is higher than that during inhalation This paper deal with special-type of Impulse Turbine so-called "Staggered Blade" for more efficiency to making air flow direct to on pressure side. Also, this paper has proposed special-type turbine with self-pitched blade more efficient.

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Modification of a Two Stage Axial Compressor of a Turboshaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.88-95
    • /
    • 1999
  • This paper introduces the part of efforts to develop a derivative type turboshaft engine from an existing baseline engine for multi-purpose helicopters aiming at 4000 kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power from 720 hp to 840hp with minimum modification, a two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, a two stage axial compressor was designed to facilitate a flow rate of 3.04 kg/s, a pressure ratio of 2.01 and an adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF