• 제목/요약/키워드: Axial Run-Out

검색결과 15건 처리시간 0.018초

동결-융해작용이 흙의 제강도특성에 미치는 영향(I) (Effects of the Freeze/Thaw Process on the Strength Characteristics of Soils(1))

  • 유능환;박승법
    • 한국농공학회지
    • /
    • 제31권2호
    • /
    • pp.43-53
    • /
    • 1989
  • In this research programs, a series test was conducted to show the effects of freeze/thaw process on the various soil properties. The tests were carried out taken from the west sea shore of Korean peninsular and the west sea shore of Scotland, and their results are as follows; 1. There was a positive total heave in a freezing run, although water may he expelled for the sample initially. The water flow must he reverse' from expulsion to intake. 2. The confining pressure had an overriding influence on the heave and frost penetration, a sudden change of the axial strain at failure with strain rate was observed occuring at a strain rate between 10-5 and 10-6, and the initial friction angle of frozen clay was appeared zero. 3. There was shown a significant decrease in liquid limit of soil which was subjected to freeze/thaw process for the initial value of about 20% because of soil particles aggregation. 4. The cyclic freeze/thaw caused a sinificant reduction in shear strength and its thixotropic regain. The frozen/thawed soil exibited negative strength regain, particularly at high freeze/thaw cycles. 5. The freezing temperature greatly influenced on the failure strength of soils and this. Trend was more pronounced the lower the freezing temperature and shown the ductile failure with indistinct peaks.

  • PDF

Analysis of restrained heated steel beams during cooling phase

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • 제9권3호
    • /
    • pp.191-208
    • /
    • 2009
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. However disgusting damages may occur in the beam-to-column connections, which is considered to be mainly caused by the enormous axial tensile forces in steel beams resulted from temperature decreasing after fire dies out. Over the past ten years, the behaviour of restrained steel beams subjected to fire during heating has been experimentally and theoretically investigated in detail, and some simplified analytical approaches have been proposed. While the performance of restrained steel beams during cooling has not been so deeply studied. For the safety evaluation and repair of steel structures against fire, more detailed investigation on the behaviour of restrained steel beams subjected to fire during cooling is necessary. When the temperature decreases, the elastic modulus and yield strength of steel recover, and the contraction force in restrained steel beams will be produced. In this paper, an incremental method is proposed for analyzing the behaviour of restrained steel beams subjected to cooling. In each temperature decrement, the development of deformation and internal forces of a restrained beam is divided into four steps, in order to consider the effect of the recovery of the elastic modulus and strength of steel and the contraction force generated by temperature decrease in the beam respectively. At last, the proposed approach is validated by FE method.

엔진 냉각수 폐열 회수용 스크롤 팽창기 설계 (Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant)

  • 유제승;김현재;김현진
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

자동차 제어장치의 져더 진동 측정 및 진단 방법 (Test and Diagnostics Methods for Judder Vibration of the Brake System)

  • 강태원;임상규
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.613-620
    • /
    • 1999
  • 디스크 두께 변화(DTV)에 의해 야기되는 져더현상은 일반적으로 차체진동, 브레이크 페달 떨림, 그리고 스티어링 휠의 떨림에 의해 감지된다. 이번 연구에서는, 차수분석 및 Operational Vibration Analysis(OVA)를 통해 차체진동이 DTV profile에 의해 어떻게 영향을 받는지를 중점적으로 조사하였다. 진동 측정위치는 knuckle, lower arm, lower arm 연결 차체부위이고, 져더 발생 DTV profile도 실측하였다. 시험 분석 결과, DTV는 져더현상에 차수별 상대적인 방향 기여도를 나타내며 특히 디스크 회전 2차 성분은 차량진행 방향으로의 lower arm 진동을 현저하게 야기시키는 것으로 나타났다. 이러한 시험 및 분석 기술은 져더 현상을 진단하고 문제를 개선하는데 유효하리라고 예측된다.

  • PDF

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.