• Title/Summary/Keyword: Axial Rotation

Search Result 299, Processing Time 0.028 seconds

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Comparative Study on Axes of Rotation Data by Within-Subjects Designs (피험자내 설계에 의한 회전축자료의 비교연구)

  • Kim, Jinuk
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.873-887
    • /
    • 2013
  • The axis of rotation in biomechanics is a major tool to investigate joint function; therefore, many methods to estimate the axis of rotation have been developed. However, there exist several problems to describe, estimate, and test the axis statistically. The axis is directional data(axial data) and it should not be analyzed with traditional statistics. A proper comparative method should be considered to compare axis estimating methods for the same given data ANOVA (analysis of variance) is a frequently used statistical method to compare treatment means in experimental designs. In case of the axial data response assumed to come from Watson distribution, there are a few ANOVA method options. This study constructed ANOVA models for within-subjects designs of axial data. Two models (one within-subjects factor and two within-subjects factors crossed design) were considered. The empirical data used in this study were instantaneous axes of rotation of flexion/extension at the knee joint and the flexion/extension and pronation/supination at the elbow joint. The results of this study can be further applied to the various analysis of experimental designs.

A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli (환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구)

  • Suh, B.T.;JANG, Y.K.;Kim, D.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.

Optimal Shoulder Position for Visualization of SLAP Ⅱ lesion on MR-Arthrography (SLAP Ⅱ 병변의 진단을 위한 관절 조영 자기 공명 영상에서 견관절 위치에 따른 비교)

  • Lee Young-Soo;Shin Dong-Bae;Park Soo-Jin;Kim Jin-Yong;Kim Hee-Sang;Ha Du-Hae
    • Clinics in Shoulder and Elbow
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Purpose : The purpose of this study was to evaluate the efficacy of oblique coronal MR images, oblique axial images of neutral, internal rotation and external rotation positions in the diagnosis of SLAP Ⅱ lesion. Materials and Methods: MR arthrography of the glenohumeral joint was evaluated retrospectively in 16 patients(16 shoulders) who underwent arthroscopic surgery(mean age; 38 years old, Male; 13, Female; 3). Oblique coronal fat-suppressed Tl-weighted spin echo images were performed with each shoulder in the neutral position of the arm and oblique axial images were performed in neutral, internal and external rotations of the arm respectively. The preoperative findings of MR were classified as definite tear, possible tear and no tear. Arthroscopic findings were correlated with MR findings of several different position of the arm. Results: Arthroscopic surgery revealed 8 SLAP Ⅱ lesion, 2 SLAP I lesion, and 6 normal superior labrum respectively. The accuracy of diagnosis in the 8 SLAP Ⅱ lesion were high on oblique axial image in external rotation which were interpreted as 8 definite tear, to compare with oblique axial images in neutral position which were interpreted as 4 definite tear, 3 possible tear, 1 no tear. The 6 normal superior labrum lesion were interpreted as no tear in all three position. The 2 SLAP I lesion were interpreted as 1 definite tear, 1 no tear on oblique axial image in neutral position and 1 definite tear, 1 possible tear on oblique axial image in external rotation. Conclusion: This study showed that axial MR images in external rotation of the arm combined with oblique coronal images have proved to be effective to detect SLAP Ⅱ lesion, and should be considered in imaging protocol for MR arthrography of the SLAP Ⅱ lesion.

  • PDF

Axial Rotation of Toric Soft Lens by Corneal Astigmatism and Change of Posture (각막난시와 자세 변화에 의한 토릭소프트렌즈의 축 회전)

  • Kim, So Ra;Kim, Hyun Sun;Jung, Ga Won;Park, Hyung Min;Park, Sang Hee;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.441-447
    • /
    • 2013
  • Purpose: The present study was conducted to investigate the axial rotations of toric soft lens during the change of lens wearer's posture, and the relationship between its rotation and corneal astigmatism. Methods: The amount, direction, and speed of toric soft contact lens rotation were measured for 42 eyes (aged 20s) with the rule astigmatism in the straight and lying postures, and it compared between their changes according to corneal astigmatism. Results: There was no significant difference in the axial rotation of lens for the astigmatism prescription between the straight and lying postures. However, the rotation angle was significantly different according to the posture of lens wearer. Rotating directions in straight posture were nasal direction for 20 eyes and temporal direction for 22 eyes. In lying posture, lenses of most wearers were rotated to a direction of lying posture, and the initial rotating speed was very fast in initial wearing for -0.75 D toric lenses, but consistency for -1.25 D toric lenses. The rotation angle in lying posture showed significantly different according to the amount of corneal astigmatism, the lens speed was also significantly different according to the wearing time but not the amount of corneal astigmatism. Conclusions: The axial rotation of toric soft lens was different by the lens wearer's posture and its amount was the greater with the higher degree of corneal astigmatism. Thus, these factors should be considered for the development of toric lens design.

Biomechanical Analysis of the Artificial Discs (인공디스크에 대한 생체역학적 분석)

  • Kim Young-Eun;Yun Sang-Seok;Jung Sang-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.907-910
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical change with its implantation was rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Two models implanted with artificial discs, SB $Charit\acute{e}$ or Prodisc, via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments and facet joint, and the stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400 N were compared. The implanted model showed increased flexion-extension range of motion and increased force in the vertically oriented ligaments, such as ligamentum flavum, supraspinous ligament and interspinous ligament. The increase of facet contact force on extension were greater in implanted models. The incresed stress distribution on vertebral endplate for implanted cases indicated that additinal bone growth around vertebral body and this is matched well with clinical observation. With axial rotation moment, relatively less axial rotation were observed in SB $Charit\acute{e}$ model than in ProDisc model.

  • PDF

Effects of Axial Force on Deformation Capacity of Steel Encased Reinforced Concrete Beam-Columns (매립형 SRC 기둥재의 변형성능에 대한 축력의 영향)

  • Chung, Jin-An;Yang, Il-Seung;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.251-259
    • /
    • 2003
  • In this paper, an analytical approach hwas been conductsed to clarify the relationships between the axial force and the deformation capacity of steel- encased reinforced- concrete beam-columns. The analytical model was defined as a cantilever. Several parameters influencing the inelastic performance of the beam-columns were selected, as follows: including encased steel area ratios, and sectional shapes of the encased steel, material strengths, and shear-span- to-depth ratios. The Analytical results of the analysis showed that the axial force had to have a maximum limit to ensure the stable behavior of a steel- encased reinforced- concrete beam-column when it was subjected to both axial and repeated lateral loading under a constant rotation angle amplitude. The maximum axial force of the beam-column to be resisted under cyclic lateral loading was defined as the stable-limit axial force to ensure the required rotation angle amplitude. The Analytical results of the analysis indicate that the stable-limit axial load ratio increases as the steel strength increases or as the compressive strength of the concrete decreases. The stable-limit axial load ratio decreases as the encased steel ' s sectional area increases in the case of a 1-shaped sections and it is almost not influenced by the steel sectional area in the case of a cross-shaped section.

An Axial-type Self-bearing Motor for Small Vertical Axial-flow Pump (소형 수직형 축류 펌프를 위한 축방향 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.223-232
    • /
    • 2001
  • Aiming at a small axial pump with a levitated rotor, an axial-type self-bearing motor is presented, which has a rotor wish four permanent magnets and two stators with two-pole three-phase windings. In this system, only the axial motion of rotor is actively controlled by two opposite self-bearing motors just like in the case of an axial magnetic bearing, while the other motions are passively stable. For rotation, It follows the theory of a four-pole three-phase synchronous motor. This paper Introduces schemes for design and control of the self-bearing motor and shows some experimental results to Prove the feasibility of application for the axial Pump.

  • PDF

The Effect of Stretch-Shortening Cycle on the Joint Power of the Jireugi in the Taekwondo Juchumseogi Stance (태권도 주춤서 지르기에서 Stretch-Shortening Cycle 이 관절파워에 미치는 효과)

  • Choi, Chi-Sun;Chung, Chul-Soo;Shin, In-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The purpose of this study was to investigate the muscle mechanical properties of the pelvic axial pre-rotational movement for the Jireugi in the Taekwondo Juchumseogi stance. Eleven elite Taekwondo Poomsae athletes participated. Each participant performed 5 right hand Jireugi in Juchumseogi stance as fast and strong as possible while their motion was recorded by a 3D motion analysis system and the ground reaction forces by two force plates. The power and work of the muscular group surrounding the waist were analyzed to verify the effect of the stretch-shortening cycle (SSC) theory. The cause of the greater power seems to be the application of the SSC by the muscles surrounding the waist during the preparation phase of the pre-rotation group. For the none pre-rotation group, they only used the concentric contraction of the muscles surrounding the waist. Because the pre-rotation group used the SSC theory, they had the effect of shortening of the range of movement, creating a fast and more powerful rotation, thus anticipating the increase the magnitude of impact.