• 제목/요약/키워드: Axial Pump

검색결과 221건 처리시간 0.023초

터보펌프 축추력 조절용 캐비티 베인에 대한 수치해석적 연구 (Numerical Study on the Effect of Cavity Vanes to Control the Axial Thrust of a Turbopump)

  • 최창호;김진한;노준구
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.39-43
    • /
    • 2006
  • The magnitude of the axial force acting on turbopump bearings has a great influence on the operational reliability and service life of a turbopump. In the turbopump under current investigation the cavity vanes are introduced to the pump shroud casing to control the axial thrust of the turbopump. To investigate the effect of the cavity vanes, 3D computational flow analyses for a propellant pump stage including an inducer, impeller, volute and secondary flow passages are performed with and without the vanes. The results show that the cavity vanes are very effective in reducing the magnitude of axial thrust without notable changes on the overall performance of the turbopump.

터보펌프 축추력 조절용 캐버티 베인에 대한 수치해석적 연구 (Numerical Study on the Effect of Cavity Vanes to Control the Axial Thrust of a Turbopump)

  • 노준구;최창호;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.354-358
    • /
    • 2005
  • The magnitude of the axial force acting on turbopump bearings has a great influence on the operational reliability and service life of a turbopump. In the turbopump under current investigation the cavity vanes are introduced to the pump shroud casing to control the axial thrust of the turbopump. To investigate the effect of the cavity vanes, 3D computational flow analyses for a propellant pump stage including an inducer, impeller, volute and secondary flow passages are performed with and without the vanes. The results show that the cavity vanes are very effective in reducing the magnitude of axial thrust without notable changes on the overall performance of the turbopump.

  • PDF

크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용 (Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps)

  • 정종현;백석흠;서용권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.893-904
    • /
    • 2013
  • NSGA-II와 함께 크리깅 메타모델기반 다목적최적설계 전략을 3차원 CFD 시뮬레이션을 통해 액셜 피스톤 펌프의 밸브 플레이트 형상을 최적화하는데 적용하였다. 펌프의 압력 변동을 저감하고 수력 효율을 최대화하기 위한 최적설계 과정은 두 단계, 즉 (1) 밸브 플레이트 상의 6개 형상 설계 변수를 선정하고 각 설계변수의 변화에 따른 CFD 해석을 수행하며, (2) CFD 데이터를 이용한 NSGA-II에 기반한 다목적최적설계 접근방식으로 최소 맥동 압력과 펌프 효율 설계에 대해 파레토 프론트를 평가하는 것으로 구성된다. 이들 결과로부터 최소 맥동 압력을 가지며 액셜 피스톤 펌프의 목표 효율에 도달하는 최적 절충해를 선택할 수 있었다.

유전적 최적화 기법을 이용한 축류 펌프의 설계 (Design of an Axial-flow Pump Using a Genetic Optimization Technique)

  • 송재욱;오재민;정명균
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.795-804
    • /
    • 2002
  • The optimal design code of an axial flow pump has been developed to determine geometric and fluid dynamic variables under hydrodynamic as well as mechanical design constraints. The design code includes the optimization of the complete radial distribution of the geometry by determining the coefficients of 2$^{nd}$ order polynomials to represent the three-dimensional geometry. The optimization problem has been formulated with a nonlinear multivariable objective function, maximizing the efficiency and stall margin, while minimizing the net positive suction head required. Calculation of the objective function is based on the mean streamline analysis and through-flow analysis using the present state-of-the-art model. The optimal solution is calculated using the penalty function method in which the genetic optimizer is employed. The optimized efficiency and design variables are presented in this paper as a function of non-dimensional specific speed in the range, 2$\leq$ $n_{s}$ $\leq$10. The results can be used in preliminary design of axial flow pumps.

심장 내 이식형 축류 혈액 펌프용 자성 유체 축봉의 내압 특성 (Characteristics of the Sealing Pressure of a Magnetic Fluid Shaft Seal for Intra-Cardiac Axial Flow Blood Pumps)

  • 김동욱
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.477-482
    • /
    • 2002
  • One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments confirmed these advantages. The seal body was composed of a Nd-Fe-B magnet and two pole pieces; the seal was formed by injecting magnetic fluid into the gap (50${\mu}m$) between the pole pieces and the motor shaft. To contain the ferro-fluid in the seal and to minimize the possibility of magnetic fluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 31kPa with magnetic fluid LS-40 (saturated magnetization, 24.3 KA/m) at a motor speed of 10,000 rpm and 53kPa under static conditions(0mmHg). The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intra-cardiac axial flow blood pump.

역스월 유로 입력을 가지는 밸런스 슬리브를 적용한 고압 다단 펌프의 진동 특성 (Vibration Characteristics of High Pressure Multi-Stage Pump with Anti-Swirl Injection Balance Sleeve)

  • 곽현덕;이용복;김창호;이봉주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.214-219
    • /
    • 2002
  • As the tangential flow inside the clearance of tribe elements such as bearings and seals is increased as the shaft speed increases, the system stability will be decreased due to the increment of the instability parameter. To reduce the tangential flow inside the clearance of the balance sleeve, anti-swirl injection mechanism is applied. The balance sleeve is used in resisting the axial force induced by impeller in high pressure multi-stage pump. In this paper, total three cases are experimentally investigated; original balance steeve, anti-swirl injection balance steeve with 0 axial degree and anti-swirl injection balance sleeve with 30 axial degree. Experiments are focused in the comparison of vibration level and leakage flow rate. The results clearly shows that the anti-swirl injection balance sleeve with 0 axial degree improves the vibration characteristics. However, the anti-swirl injection balance sleeve with 30 degree aggravates the vibration characteristics. In the standpoint of leakage performance, both anti-swirl injection balance sleeves show the better result than the original balance sleeve.

  • PDF

역스월 유로 입력을 가지는 밸런스 슬리브를 적용한 고압 다단 펌프의 진동 특성 (Vibration Characteristics of High Pressure Multi-stage Pump with Anti-swirl Injection Balance Sleeve)

  • 곽현덕;이용복;김창호;이봉주
    • 한국소음진동공학회논문집
    • /
    • 제12권8호
    • /
    • pp.632-638
    • /
    • 2002
  • As the tangential flow inside the clearance of tribo elements such as bearings and seals is increased as the shaft speed increases, the system stability will be decreased due to the increment of the instability parameter. To reduce the tangential flow inside the clearance of the balance sleeve, anti-swirl injection mechanism is applied. The balance sleeve is used in resisting the axial force induced by impeller in high pressure multi-stage pump. In this paper, total three cases are experimentally investigated; original balance sleeve, anti-swirl injection balance sleeve with 0 axial degree and anti-swirl injection balance sleeve with 30 axial degree. Experiments are focused in the comparison of vibration level and leakage flow rate. The results clearly shows that the anti-swirl injection balance sleeve with 0 axial degree improves the vibration characteristics. However, the anti-swirl injection balance sleeve with 30 degree aggravates the vibration characteristics. In the standpoint of leakage performance, both anti-swirl injection balance sleeves show the better result than the original balance sleeve.

사판식 피스톤 펌프 서보제어기구 설계 (The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump)

  • 노종호;함영복;윤소남;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF

사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(2) (A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (2))

  • 김정화;신미정;김명규
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.76-81
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part II, which consists of a structural interpretation of the internal flow path of the discharge plenum of the valve block. The simple model result reviewed in Part I was incorporated into the valve block model and five different design changes were reviewed as part of the study on the structural improvement of the internal flow path of the valve block.

사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(1) (A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (1))

  • 김정화;신미정;김명규
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.69-75
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part I, which consists of a structural analysis of the valve block, identification of the stress distribution and stress raisers, and creation of a Simple Model of the valve block to review the optimal design. Structural analysis was performed by assigning the same conditions as those found in the valve block model, and the design was reviewed by examining three different design improvement plans for the internal flow path of the discharge plenum.