• Title/Summary/Keyword: Axial Flow

Search Result 1,435, Processing Time 0.027 seconds

Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan (축류송풍기 부착형 공냉식 열교환기의 진동저감)

  • 정구충;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.163-168
    • /
    • 2001
  • Vibration problems occurred in an air cooled heat exchanger with axial flow fan for a petrochemical plant were investigated. Experimental field test and theoretical verification were performed. To find the main cause of the high vibration of the fan at the air inlet of the axial fan, the frequency spectrum was measured. The natural frequency of the driving support of the heat exchanger was numerically calculated. Both of the measured and the natural frequency were approximately equal to the blade passing frequency. Because it was difficult to modify the structure of the driving support during the normal operation of the plant, the blade number of the fan was increased, which greatly reduced the vibration level of the heat exchanger.

  • PDF

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

A Suggested Mechanism of Significant Stall Suppression Effects by Air Separator Devices in Axial Flow Fans

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Radial-vaned air separators show a strong stall suppression effect in an axial flow fans. From a survey of existing literature on the effects and the author's data, a possible mechanism for the significant effects has been proposed here. The stall suppression is suggested to have been achieved by a combination of the following several effects; (1) suction of blade and casing boundary layers and elimination of embryos of stall, (2) separation and straightening of reversed swirling flow from the main flow, (3) induction of the fan main flow toward the casing wall and enhancement of the outward inclination of meridional streamlines across the rotor blade row, thus keeping the Euler head increase in the decrease in fan flow rate, and (4) reinforcement of axi-symmetric structure of the main flow. These phenomena have been induced and enhanced by a stable vortex-ring encasing the blade tips and the air separator. These integrated effects appear to have caused the great stall suppression effect that would have been impossible by other types of stall prevention devices. Thus the author would like to name the device "tip-vortex-ring assisted stall suppression device".

Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct (덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor (점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석)

  • 조강래;이진호;김주환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1044-1051
    • /
    • 1989
  • A numerical calculation is carried out for the analysis of 3-dimensional compressible flow field in axial-flow rotating blades by using finite element method. The calculation of flow in impellers plays a dominant role in the theoretical research and design of turbomachines. Three-dimensional flow fields can be obtained by the quasi-three-dimensional iterative calculation of the flows both on blade-to-blade stream surfaces and hub-to-shroud stream surfaces with the introduction of viscous loss model in order to consider a loss due to viscosity of fluid. In devising the loss model, four primary sources of losses were identified: (1) blade profile loss (2) end wall loss (3) secondary flow loss (4) tip-leakage loss. For the consideration of an axially parabolic distribution of loss, the results of present calcullation are well agreed with the results by experiment, thus the introduction of loss model is proved to be valid.

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Cone Type Gas Burner (콘형 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.341-346
    • /
    • 2001
  • The gun-type gas burner adopted in this study is generally composed of some slits and swirl vanes. Therefore, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate $450\;{\ell}/min$, which is equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. When the burner has only swirl vanes, the axial mean velocity component shows the characteristic that spreads more remarkably toward radial direction than axial one, but when it has only slits, that is developed spreading more toward axial direction than radial one. Therefore, because the biggest speed is spurted in slits and it derive main flow toward axial direction encircling rotational flow that comes out from swirl vane that is situated on the inside of slits, both slits and swirl vanes composing of cone type gas burner act role that decreases the speed near slits and increases the flow speed in the central part of a burner. Moreover, because rotational flow by swirl vanes and fast jet flow by slits increase turbulent intensities effectively coexisting, the turbulent kinetic energy is distributed with a bigger size fairly near slits than burner models which have only slit or swirl vanes within X/R<0.6410.

  • PDF

A Study of in-vitro Performances of the Intracardiac Axial Flow Pump (심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구)

  • 김동욱;삼전부호희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 1998
  • The intracardiac axial flow pump has been developed This device has several advantages: it fits well anatomically, its blood-contacting surface is small, and it is implanted as easily as an artificial heart valve replacement. The axial flow pump consists of an impeller and a motor, both of which are encased in a housing. Two types of impeller with 4 vanes and 6 vanes are used. Sealing of the motor shaft is achieved by means of a ferrofluidic seal. A flow of 5$\ell$/min was obtained at a differential pressure of 100mmHg with a motor speed of 7091rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm over 24 hours. The index of hemolysis was 0.056 with the 4-vane impeller and 0.214 with the 6-vane impeller. The intracardiac axial flow pump is a very promising circulatory support.

  • PDF

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan Operating at Different Loading Conditions

  • Baek, Je-Hyun;Lee, Gong-Hee;Myung, Hwan-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.50-60
    • /
    • 2004
  • An experimental analysis using three-dimensional Laser Doppler Velocimetry(LDV) measurement and computational analysis using the Reynolds stress model in FLUENT are conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition ($\Phi$=0.25) and two off-design conditions ($\Phi$=0.21 and 0.30). As the blade loading increases, the onset position of the rolling-up of tip leakage flow moves upstream and the trajectory of tip leakage vortex center is more inclined toward the circumferential direction. Because the casing boundary layer becomes thicker and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with the blade loading increasing. A distinct tip leakage vortex is observed downstream of the blade trailing edge at $\Phi$=0.30, but it is not observed at $\Phi$=0.21 and 0.25.