• 제목/요약/키워드: Axial Ductility

검색결과 426건 처리시간 0.024초

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • 제7권1호
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam

  • Halahla, Abdulsamee M.;Tahnat, Yazan B. Abu;Dwaikat, Monther B.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.231-243
    • /
    • 2022
  • Beam-column joints (BCJs) are recognized among the most crucial zones in reinforced concrete structures, as they are the critical elements subjected to a complex state of forces during a severe earthquake. Under such conditions, BCJs exhibit behaviors with impacts that extend to the whole structure and significantly influence its ductility and capability of dissipating energy. The focus of this paper is to investigate the effect of undamaged transverse beam (secondary beams) on the ductility of concrete BCJs reinforced with conventional steel and shape memory alloys bars using pushover analysis at tip of beam under different axial load levels at the column using a nonlinear finite element model in ABAQUS environment. A numerical model of a BCJ was constructed and the analysis outcomes were verified by comparing them to those obtained from previous experiments found in the literature. The comparison evidenced the capability of the calibrated model to predict the load capacity response of the joint. Results proved the ability of undamaged secondary beams to provide a noticeable improvement to the ductility of reinforced concrete joints, with a very negligible loss in load capacity. However, the effect of secondary beams can become less significant if the beams are damaged due to seismic effects. In addition, the axial load was found to significantly enhance the performance of BCJs, where the increase in axial load magnified the capacity of the joint. However, higher values of axial load resulted in greater initial stiffness of the BCJ.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Structural performance of novel SCARC column under axial and eccentric loads

  • Zhou, Chunheng;Chen, Zongping;Li, Junhua;Cai, Liping;Huang, Zhenhua
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.503-516
    • /
    • 2020
  • A novel spiral confined angle-steel reinforced concrete (SCARC) column was developed in this study. A total of 16 specimens were prepared and tested (eight of them were tested under axial loading, the other eight were tested under eccentric loading). The failure processes and load-displacement relationships of specimens under axial and eccentric loads were examined, respectively. The load-carrying capacity and ductility were evaluated by parametric analysis. A calculation approach was developed to predict the axial and eccentric load-carrying capacity of these novel columns. Results showed that the spiral reinforcement provided enough confinement in SCARC columns under axial and low eccentric loads, but was not effective in that under high eccentric loads. The axial load-carrying capacity and ductility of SCARC columns were improved significantly due to the satisfactory confinement from spirals. The outer reinforcement and other construction measures were necessary for SCARC columns to prevent premature spalling of the concrete cover. The proposed calculation approach provided a reliable prediction of the load-carrying capacity of SCARC columns.

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

축력과 휨 모멘트를 받는 RC 부재의 CFRP 시트 보강에 따른 성능 평가 (Evaluation of Performance of CFRP Sheet Reinforcement on RC Members Subjected to Axial Load and Flexural Moment)

  • 배찬영;이지형;김상우;김진섭
    • 대한토목학회논문집
    • /
    • 제43권5호
    • /
    • pp.567-576
    • /
    • 2023
  • 일반적으로 RC 보 부재는 휨 부재로서 휨 하중에 대해서만 고려하여 설계된다. 하지만, 실제 건축물에서는 부재 간의 연속성으로 인해 축력과 휨 하중을 동시에 받게 된다. 이로 인해 RC 보 부재의 휨 강도는 증가하지만, 변위는 감소하며, 균열은 주로 보의 중앙부에 집중되게 된다. 따라서 본 연구에서는 축력과 휨 하중을 동시에 받는 RC 보 부재에 탄소섬유시트를 이용한 보강에 따른 휨 성능을 실험적으로 평가하였다. 탄소섬유시트는 부재의 중앙부에 감싸 보강을 하였으며, 축력과 휨 하중을 부재에 가력하였다. 축력의 크기와 탄소섬유시트 보강에 따른 철근콘크리트 부재의 파괴 형태, 휨 강도, 처짐 및 연성을 분석하였다. 그 결과, 축력의 증가에 따라 최대 휨 강도의 상승이 발생하였지만, 연성은 최대 64%까지 감소하였다. 탄소섬유시트 보강을 통해 휨 강도는 최대 27% 증가하였으며, 휨에 의한 보의 최대 처짐은 8% 감소하였으며 연성은 최대 43% 증가하였다.

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

지진하중을 받는 철근콘크리트 교각의 연성도 상관관계 (Ductility Relationship of RC Bridge Columns under Seismic Loading)

  • 손혁수;이재훈
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.51-61
    • /
    • 2003
  • 본 연구는 철근콘크리트 교각에 대한 새로운 내진설계법을 개발하기 위한 연구의 일환으로서, 축력과 함께 반복 횡하증을 받는 철근콘크리트 교각의 곡률연성도와 변위연성도의 상관관계를 분석하고 연성도 상관관계식을 제시함을 목적으로 한다. 이를 위하여, 반복하중을 받는 철근콘크리트 기둥의 횡하중-변위 포락곡선 실험결과를 비교적 정확하게 예측하며, 특히 변형능력 및 연성도에 대하여는 실험결과에 비하여 안전측의 결과를 제공하는 비선형해석 프로그램(NARCC)를 이용하였다. 해석의 대상 교각으로는, 단면지름, 형상비, 콘크리트 강도, 축방향철근 항복강도, 심부구속철근 항복강도, 축방향철근비, 축력비, 심부구속철근비 등을 주요변수로 하여, 총 7,200개의 철근콘크리트 나선철근 기둥 모델을 채택하였으며, 세 가지 항복변위의 기준을 적용하여 총 21,600개의 해석결과자료를 대상으로 상관관계를 분석하여 형상비를 주요변수로 한 곡률연성도와 변위연성도의 상관관계식을 제안하였다.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.