• Title/Summary/Keyword: Axial Deformation

Search Result 779, Processing Time 0.025 seconds

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.

A Study on Flexibility Acquisition Method for VLCC Shaft System (VLCC 축계 시스템의 유연성 확보 방안에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.135-139
    • /
    • 2017
  • The main reason for heat accidents occurring at the after stern tube bearing (STB) is excessive local pressure caused by the deflection of the propulsion shaft due to propeller loads. The probability of a heat accident is increased by the low flexibility of the shaft system in very large crude oil carriers (VLCCs) as the engine power and shaft diameter increase and the distance decreases between the forward and after STBs. This study proposed shaft system with only an after STB and no forward STB for a flexibility acquisition method for a VLCC shaft system under hull deformation. A Hertzian contact condition was applied, which assumes a half-elliptical pressure distribution along the contact width for the calculation of the local squeeze pressure. The propeller loads, heat effect, and hull deflection under engine operating conditions are also considered. The results show that the required design criteria were satisfied by building a partial slope at the white metal, which is the material at the axial contact side in the after STB. This system could reduce building cost by simplification of the shaft system.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.

Hierarchical Non-Rigid Registration by Bodily Tissue-based Segmentation : Application to the Visible Human Cross-sectional Color Images and CT Legs Images (조직 기반 계층적 non-rigid 정합: Visible Human 컬러 단면 영상과 CT 다리 영상에 적용)

  • Kim, Gye-Hyun;Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Non-rigid registration between different modality images with shape deformation can be used to diagnosis and study for inter-patient image registration, longitudinal intra-patient registration, and registration between a patient image and an atlas image. This paper proposes a hierarchical registration method using bodily tissue based segmentation for registration between color images and CT images of the Visible Human leg areas. The cross-sectional color images and the axial CT images are segmented into three distinctive bodily tissue regions, respectively: fat, muscle, and bone. Each region is separately registered hierarchically. Bounding boxes containing bodily tissue regions in different modalities are initially registered. Then, boundaries of the regions are globally registered within range of searching space. Local boundary segments of the regions are further registered for non-rigid registration of the sampled boundary points. Non-rigid registration parameters for the un-sampled points are interpolated linearly. Such hierarchical approach enables the method to register images efficiently. Moreover, registration of visibly distinct bodily tissue regions provides accurate and robust result in region boundaries and inside the regions.

Nonlinear Analysis of CFT Truss Girder with the Arch-shaped Lower Chord (아치형상의 하현재를 갖는 CFT 트러스 거더의 재료 비선형 해석)

  • Song, Na-Young;Choung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.625-639
    • /
    • 2009
  • Experimental and analytical studies are performed on the mechanical behavior of concrete-filled tubular(CFT) truss girders for different f/L ratios. Bending tests are conducted on two CFT truss girder specimens to determine fundamental structural characteristics such as the strength and deformation properties. Nonlinear material models for CFT members subjected to an axial compressive force are compared in this paper by using the nonlinear finite element program, ABAQUS. Previous researchers have proposed several nonlinear stress-strain models of confined concrete. In this study, the nonlinear analyses are performed applying several stress-strain models for confined concrete proposed by Mander, Sakino, Han, Susantha and Ellobody, and the results are compared with the experimental results in terms of load-deflection and load-strain relationships. Based on the comparisons of the load-deflection relationships, the models proposed by Mander and Susantha provide a maximum load about 12.0~13.8% higher and that by Sakino gives a maximum load about 7.6% higher than the experimental results. The models proposed by Han and Ellobody give a maximum load only about 0.2~1.2% higher than the test results, showing the best agreement among the proposed stress-strain models. However, the load-strain relations predicted by the existing models generally provide conservative results exhibiting larger strains than the experimental data.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

Comparison of internal and marginal fit of crown according to milling order in a single machinable wax disc (단일 절삭가공용 왁스 디스크 내에서 순차적 절삭가공 순서에 따른 크라운의 내면 및 변연 적합도 비교)

  • Song, Jun-Beom;Lee, Jonghyuk;Ha, Seung-Ryong;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.395-404
    • /
    • 2021
  • Purpose. The purpose of present study was to evaluate the effect of changing structural stability of wax disc on the fit of prosthesis when the milling proceeded in order. Materials and methods. Prepared maxillary left first molar was used to fabricate a Ni-Cr alloy reference model. This was scanned to design crown and then wax pattern was milled, invested and cast to fabricate prosthesis. The wax patterns located in a row centrally within a single wax disc were set into a total of five groups ranging from WM1 group that was first milled to WM5 group that was last milled and the number of each group was set as 10. Silicone replica technique was used to measure the marginal gap, axial internal gap, line angle internal gap, occlusal internal gap. Data was evaluated with one-way ANOVA with significance level set at α = .05 and then Tukey HSD test was conducted for post analysis. Results. Marginal gap measured in each group, it was 40.41 ± 2.15 ㎛ in WM1 group, 40.44 ± 2.23 ㎛ in WM2 group, 39.96 ± 2.25 ㎛ in WM3 group, 39.96 ± 2.48 ㎛ in WM4 group, and 40.57 ± 2.53 ㎛ in WM5 group. No significant difference was found between groups. The significant difference between the groups was also not found in the axial internal gap, line angle internal gap, and occlusal internal gap. Conclusion. Internal and marginal fit of single crown to the sequential order of milling processing in the single machinable wax disc did not seem to be affected by the sequence.

A Characteristic of Deformation and Strength of Domestic Sands by Triaxial Compression Tests (삼축압축시험에 의한 국내 모래의 변형-강도 특성)

  • Park, Choon Sik;Kim, Jong Hwan;Park, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.515-527
    • /
    • 2014
  • This study conducted experiment for understanding engineering characteristics of domestic sands by examining standard sand and sand from Yokji Island and Nakdong River in terms of confining pressure, $K_0$, over consolidation and relative density factors through triaxial compression test. The test showed that deviator stress by strain positively changed as confining pressure and relative density grow while $K_0$ and over consolidation factors do not directly correlated with it. Angle of internal friction decreases as confining pressure increases which strengthens contact force between particles, and declines as relative density drops, whereas $K_0$ and over consolidation factors hardly affect the results. When it comes to volumetric strain, volume expansion decreases as confining pressure increase due to crushability and rearrangement of particles while $K_0$ and over consolidation shows same movement unconditionally, and relative density appears compressed as it grows at the beginning however it expands as axial strain increases. Modulus of elasticity ($E_{sec}$) by strain has tendency into convergence resulting in initial secant modulus of elasticity ($E_{ini}$) > secant modulus of elasticity($E_{sec}$) > tangent modulus of elasticity ($E_{tan}$). On the other hand, it grows as confining pressure and relative density increase while indicating similar modulus of elasticity ($E_{sec}$) regarding on $K_0$ and over consolidation. Slope of critical line (M) tended to decrease as confining pressure increases, follow same line according to $K_0$, confining pressure and relative density, and increase as relative density grows.