• Title/Summary/Keyword: Axial Data

Search Result 1,062, Processing Time 0.024 seconds

Neural correlations of familiar and Unfamiliar face recognition by using Event Related fMRI

  • Kim, Jeong-Seok;Jeun, Sin-Soo;Kim, Bum-Soo;Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.78-78
    • /
    • 2003
  • Purpose: This event related fMRI study was to further our understanding about how different brain regions could contribute to effective access of specific information stored in long term memory. This experiment has allowed us to determine the brain regions involved in recognition of familiar faces among non familiar faces. Materials and Methods: Twelve right handed normal, healthy volunteer adults participated in face recognition experiment. The paradigm consists of two 40 familiar faces, 40 unfamiliar faces and control base with scrambled faces in a randomized order, with null events. Volunteers were instructed to press on one of two possible buttons of a response box to indicate whether a face was familiar or not. Incorrect answers were ignored. A 1.5T MRI system(GMENS) was employed to evaluate brain activity by using blood oxygen level dependent (BOLD) contrast. Gradient Echo EPI sequence with TR/TE= 2250/40 msec was used for 17 contiguous axial slices of 7mm thickness, covering the whole brain volume (240mm Field of view, 64 ${\times}$ 64 in plane resolution). The acquired data were applied to SPM99 for the processing such as realignment, normalization, smoothing, statistical ANOVA and statistical preference. Results/Disscusion: The comparison of familiar faces vs unfamiliar faces yielded significant activations in the medial temporal regions, the occipito temporal regions and in frontal regions. These results suggest that when volunteers are asked to recognize familiar faces among unfamiliar faces they tend to activate several regions frequently involved in face perception. The medial temporal regions are also activated for familiar and unfamiliar faces. This interesting result suggests a contribution of this structure in the attempt to match perceived faces with pre existing semantic representations stored in long term memory.

  • PDF

A study on categories of questions when holding counselling on learning math in regards to grounded theoretical approaches (근거이론적 접근에 따른 수학학습 상담 발문 유형에 대한 연구)

  • Ko, Ho Kyoung;Kim, Dong Won;Lee, Hwan Chul;Choi, Tae Young
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.1
    • /
    • pp.73-92
    • /
    • 2014
  • This study was performed in part with the task to find measures to improve the defining characteristics of feelings, value, interest, self-efficacy, and others aspects in regards to learning math among elementary and middle school students. For this study, it was essential to understand the appropriate questions that are needed to be asked during a consultation at a math clinic, for students that are having a hard time learning math. As a method for performing this study, the content of scheduled counseling over 2 years from a math clinic were collected and the questions that were given and taken were analyzed in order to figure out the types of questions needed in order to effectively examine students that are facing difficulty with learning math. The analysis was performed using Grounded theory analysis by Strauss & Corbin(1998) and went through the process of open coding, axial coding, and selective coding. For the paradigm in the categorical analysis stage, 'attitude towards learning math' was set as the casual condition, 'feelings towards learning math' was set as the contextual condition, 'confidence in one's ability to learn math' was set as the phenomenon, 'individual tendencies when learning math' was set as the intervening condition, 'self-management of learning math' was set as the action/interaction strategy, and 'method of learning' was set as the consequence. Through this, the questions that appeared during counseling were linked into categories and subcategories. Through this process, 81 concepts were deducted, which were grouped into 31 categories. I believe that this data can be used as grounded theory for standardization of consultation in clinics.

  • PDF

A Study on the Genesis of Fluorite Deposits of South Korea (남한(南韓)의 형석광상(螢石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.25-56
    • /
    • 1975
  • Most fluorite deposits of South Korea are distributed in three metallogenic zones namly as: Hwacheon, Hwangangni and Geumsan metallogenic zones. Fluorite deposits of each zone show The characteristic features owing to the geological setting, the structural patterns and their forming processes. deposits of the Hwacheon metallogenic zone are wholly fissure filling hydrothermal veins emThe bedded in shear fractures of the granite gneiss or schists of Precambrian age or in the cooling fractures of the granite and acidic hypabyssal rocks which are assumed to be a differentiated sister rock of the granite. Localization of most fluorite veins of the region is structurally controlled by NW and EW fracture systems and genetically related to the granite intrusion which ascertained as motivating rock of the fluorite mineralization. Fluorites are in most cases accompanied by quartz, chalcedony mainly and rarely agate, calcite, barite and sulphide base metals in some localities. The deposits of the Hwangangni metallogenic zone were formed at the last stage of hydrothermal polymineralization of W, Mo, Cu, Pb, Zn. The majority of the fluorite ore bodies were originated from replacement in limestone beds of Great Limestone Series or in calcareous interbeds of metasediments, whereas some cavity-filling ore bodies were embedded in phyllites and schists of the Ockcheon system and along the fissures in the replaced beds which were originated by volume decrease. The localization of fluorite deposits in this region is genetically related to the Moongyong granite which has been dated as middle Cretaceous, and controlled structurally by the $N20^{\circ}{\sim}50^{\circ}W$ extension fracture system or axial planes of folds, and by faults of NE direction that acted as paths of ore solution. The deposits of the Geumsan metallogenic zone are seemed to be formed through the similar process as that of Hwangangni metallogenic zone, but characteristic distinctions are in that they are more prevailing fracture filling veins and large number of the deposits are localized in roof-pendants or xenolithes of limestone in granites and porphyries. Igneous rocks that presumably motivated the mineraltzation are middle Cretaceous Geumsan granite and porphyries. Metallogenic epoch of the fluorite mineralization of South Korea are puesumably limited in early-middle Cretaceous. Studies of the fluid inclusions in fluorites of the region reveal that the homogenization temperature of the fluorite deposits are as follows: Hwacheon metallogenic zone : $95^{\circ}C{\sim}165^{\circ}C$; Hwangangni metallogenic zone : $97^{\circ}C{\sim}235^{\circ}C$; Geumsan metallogenic zone : $93^{\circ}C{\sim}236^{\circ}C$. Judging from the above results, the deposits of the Hwancheon region were formed at the epithermal stage, and those in the Hwangangni and Geumsan regions, were deposited at epithermal stage preceded by mesothermal mineralization of small scale in which some sulphide minerals were deposited. The analytical data of minor elements in the fluorites reveal that ore solutions of Hwangangni metallogenic zone seemed to be emanated in more acidic stage of magma differentiation than Hwacheon metallogenic zone did.

  • PDF

Analysis on the Stress of Hydraulic Cylinder for Large Vessel by Boundary Element Method (대형선박용 유압실린더에서 경제요소법을 이용한 응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.423-434
    • /
    • 1995
  • It was used boundary element method(BEM) and analysed axisymmetric problem to solve hydraulic cylinder for large vessel acting uniform internal pressure(25N/m super(2)) within elastic limit. This paper was utilized the carbon steel tubes for machine structural purposed model, inner radius was 150mm and outer radius was 250mm, axial length was semi-infinite and the isoparametric element was used. The important results obtained in this study were summarized as follows. Radial, tangential and shearing stress occured the maximum stresses(48, -20 and 34MPa) at the inner radius and the minimum stresses(32, -4 and 18MPa) at the outer radius of the hydraulic cylinder for large vessel. But negative signs have meaning compressive stress and stress diminution ratio was about 0.15MPa/mm. The use of isoparametric element raised accuracy and the increment of input data lessened the error in internal point but computer run-time was increased. The double node was improved the internal solutions to settle discontinuity at corner and the double exponential formula lessened error of stress value at boundary neighborhood. And then coincidence between the analytical and exact results is found to be fairly good, showing that the proposed analytical by BEM is reliable.

  • PDF

Uncertainty and Sensitivity Analysis of Time-Dependent Deformation in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 시간에 따른 변형의 확률 해석 및 민감도 해석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.149-159
    • /
    • 1998
  • The reasonable prediction of time-dependent deformation of prestressed concrete(PSC) box girder bridges is very important for accurate construction as well as good serviceability. The long-term behavior is mostly influenced by the probabilistic characteristic of creep and shrinkage. This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box been taken into account - model uncertainty, parameter variation and environmental condition. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measure are examined to quantify the sensitivity of the outputs of each of the input variables. These are rank correlation coefficient(RCC), partical rank correlation coefficient(PRCC) and standardiozed rank regression coefficient(SRRC) computed on the ranks of the observations. Three creep and shrinkage models - i. e., ACI model. CEB-FIP model and the model in Korea Highway Bridge Specification - are studied. The creep model uncertainy factor and the relative humidity appear to be the most dominant factors with regard to the model output uncertainty.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

Local Buckling Behavior of Stub H-shaped Columns Fabricated with HSA800 High Performance Steels under Concentric Axial Loading (중심압축력을 받는 건축구조용 고성능강(HSA800) 용접H형 단주의 국부좌굴거동)

  • Lee, Kangmin;Lee, Myung Jae;Oh, Young Suk;Kim, Tae Soo;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.289-297
    • /
    • 2013
  • In this study, the local buckling behavior of steel built-up columns, fabricated with grade 800MPa high performance (HSA800), was investigated to verify the suitability of width-to-thickness ratio limits adopted by the current design code. For this purpose, an experimental program was designed and performed for HSA800 steel column specimens with various width-to-thickness ratios. Then the experimental results were compared and verified with finite element analysis results. The parametric analytical studies with various width-to-thickness ratios were also performed to investigate the missing data from the limited experimental studies. From the experimental and analytical studies, It was found that the finite analysis models could reasonably estimate the test results within the 5.3% average differences. The local buckling behaviors of HSA800 steel columns were found to be largely depend on the values of initial imperfection introduced into finite element analyses.

Analysis and Design of an Accommodation-Dependent Eye Model Based on Navarro Model (Navarro 모형안에 기반을 둔 조절을 고려한 모형안의 설계 및 분석)

  • Kang, Eun Kyoung;Park, Sung Chan;Kim, Jin Joo;Hwangbo, Chang Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.235-240
    • /
    • 2010
  • Purpose: In this study, we proposed a simple accommodation-dependent crystalline lens with a constant volume and homogeneous refractive index. Methods: We proposed a human crystalline lens with two aspheric surfaces. Two surfaces intersect in two points and straight line between two points was equator(2b). It assumed that the derivative in axial direction was zero at the equator and the radial derivative was zero at the vertex. Proposed human crystalline lens was divided by the equator into the anterior and posterior parts. It was assume that the volume of each part and refractive index of the human crystalline lens were constant during accommodation. Results: For the changes during accommodation, geometrical parameters were determined by different objective distances. Considering the constant volume of each part with the small decrement of the equator, we obtained the paraxial parameters, such as the anterior and posterior vertex radius of curvature and lens thickness. Compared with the experimental data published in the literature, calculated values using simple approximation showed similar change per accommodative stimulus. Conclusions: These results showed that proposed simple approximation using assumption of constant volume and refractive index of the human crystalline lens made it possible to predict changes of geometrical parameters during accommodation.

Performance Analysis of a Portable Horizontal Axis Hydro Turbine by Computational Fluid Dynamics (CFD를 통한 휴대용 수평축 수차의 성능해석)

  • Park, Ji-Hoon;Baek, Sang-Hwa;Choi, Hyen-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.561-568
    • /
    • 2020
  • A performance analysis was conducted according to changes in inflow velocity and the tip speed ratio of a portable horizontal-axis hydro turbine that can be used for marine leisure sports and outdoor activities by using the commercial computational fluid dynamics software ANSYS CFX. By using the analysis result and flow field analysis, the design was reviewed and the performance of the device was confirmed. In addition, data necessary to improve the performance of the hydro turbine were acquired by performing an additional performance analysis according to the variable blade pitch angle. The results among the numerical analysis cases show that the highest performance at all inflow velocities and blade pitch angles if achieved at a tip speed ratio of 4. The output power was found to be 30 W even under some conditions below the design flow rate. Among the numerical analysis cases, the highest output power (~ 85 W) and power coefficient (~ 0.30) were observed at an inlet flow rate of 1.5 m/s, a blade pitch angle of 3°, and a tip speed ratio of 4.