• Title/Summary/Keyword: Axial Compressor

Search Result 182, Processing Time 0.02 seconds

Design Optimization of An Axial-Flow Compressor Rotor Using Response Surface Method (반응면 기법을 이용한 천음속 축류압축기의 삼차원 형상 최적설계)

  • Ahn, Chan-Sol;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.155-162
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It is also found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

Aerodynamic Design Optimization of An Axial Flow Compressor Rotor (반응면 기법을 이용한 천음속 축류압축기의 3차원 형상 최적설계)

  • Ahn, Chan-Sol;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.135-142
    • /
    • 2001
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. Ana, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

On the Stability of the Axially Compliant Fixed Scroll Member in Scroll Compressors

  • Hyun Jin Kim
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.40-49
    • /
    • 2002
  • Floating fixed scroll adopted for tip sealing enhancement in a scroll compressor is always under the influence of tipping moment produced by internal gas forces. Unless the tipping moment is property compensated by some restoring moment, the fired scroll would suffer tipping movement, degrading the compressor performance. The condition on which the tipping movement of the fixed scroll can be suppressed has been investigated analytically. For no tipping movement, the floating fixed scroll should be suspended on the main frame at proper level. The upper limit of the stable suspension is the axial location of the o-rings adopted for a back pressure chamber sealing on the rear side of the fixed scroll, and the lower limit is the mid-height of the scroll wrap.

Off-Design Performance Prediction of a Gas Turbine Engine (가스터빈 기관의 탈설계점 해석)

  • Kang, D.J.;Ryu, J.W.;Jung, P.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1851-1863
    • /
    • 1993
  • A procedure for the prediction of the off-design performance of a gas turbine engine is proposed. The system performance at off-design speed is predicted by coupling the thermodynamic models of a compressor and a turbine. The off-design performance of a compressor is obtained using the stage-stackimg method, while the Ainlay-Mathieson method is used for a turbine. The procedure is applied to a single-shaft gas turbine and its predictability is found satisfactory. The results also show that the net work output increases with the increase of the turbine inlet temperature, while the thermal efficiency is marginal. The maximum thermal efficiency at design point is obtained between the highest pressure ratio and design pressure ratio.

The Calculation of Three-Dimensional Viscous Flow in a Transonic, Multi-Stage Axial Compressor (다단축류압축기내의 천음속 점성유동에 대한 삼차원 수치해석)

  • Yi H. W.;Kim K. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.181-189
    • /
    • 1998
  • A numerical study based on the three-dimensional Reynolds averaged Navier-Stokes equations is presented to analyze the transonic flowfield through two-stage axial compressor. Explicit four-step Runge-Kutta scheme is used for solution algorithm, and local time step and implicit residual averaging are introduced for enhancing the convergency. Artificial dissipation model is adopted to assure the stability of solution. The solver is coupled with Baldwin-Lomax model to describe turbulence. To avoid calculating the unsteady flow, a mixing process is modeled at a station between rotating and stationary blade rows. Results show a variety of important physical phenomena. Comparison of the flowfields with and without tip clearance shows that the effect is considerable in this flowfield. Comparisons with experimental data carried out to validate the calculational results show reasonable agreements. Some remedies are also suggested to improve the revealed problems.

  • PDF

Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method (반응표면법을 이용한 축류 압축기의 동익형상 최적설계)

  • Song, You-Joon;Lee, Jeong-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point (설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계)

  • Ko, Woo-Sik;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석)

  • Yun, Wan-No;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

Performance Assessment of MDO Optimized 1-Stage Axial Compressor (MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok;Lee, Sae-Il;Lee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.397-400
    • /
    • 2011
  • MDO Optimization for a low pressure axial compressor rotor has been carried out to improve aerodynamic performance and structural stability. Global optimized solution was obtained from an artificial neural network model with genetic algorithm. Optimized rotor model has a high blade loading near hub and near zero incidence flow angle near tip region to reduce the incidence loss and flow separation at trailing edge region. Also the rotor shape is converged to a trapezoid shape to reduce the maximum stress occurred at the root of the blade. Numerical simulation results show that rotor has 87.6% rotor efficiency and safety factor over than 3.

  • PDF