• 제목/요약/키워드: Axial Compression Test

검색결과 340건 처리시간 0.025초

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구 (A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method)

  • 김거영;구정서
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.1-12
    • /
    • 2009
  • 본 논문에서는 복합재 원형튜브의 에너지 흡수 특성을 평가하기 위해 준정적 압괴실험을 시행하였다. 사용된 시편은 필라멘트 와인딩 공법으로 제작된 GFRP(유리섬유/에폭시수지) 원형 튜브이다. 복합재 튜브의 에너지 흡수 특성 분석을 위한 파라미터로서 튜브의 트리거메커니즘, t/D, 섬유배향각 등을 고려하여 그 특성을 비교하였다. 튜브의 형상 측면에서 튜브 직경이 커짐에 따라 delamination에 의한 국부좌굴 발생빈도가 증가하게 되어 불안정한 압괴모드가 발생하는데 이러한 현상은 섬유 배향각을 조정하여 안정적인 압괴모드를 도출할 수 있었다.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

SOIL FAILURE AND ITS APPLICATION TO VIBRATING TILLAGE TOOL

  • Niyamapa, Tanya
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1053-1062
    • /
    • 1993
  • The effect of loading speed on soil failure was studied by using a high speed triaxial compression test. Tests were conducted at 0.35-6.2m/s loading speed to compress soil specimens of sandy loam at different moisture contents. The axial stress at fracture increased with increase in loading speed up to certain critical speeds, however they decreased as the speed up to certain critical speeds, however they decreased as the speed increased further. Experiments were also conducted in the field of sandy loam soil with the vibrating tillage tool. Tests were done at 0.33-0.85m/s tractor speed oscillating frequency 13.7hz and oscillating amplitude 59mm. The maximum oscillating velocity of tillage tool was 2.5m/s. It was observed that for the oscillating operation, initially draft slightly increased with increase in forward speed and then it decreased .For the non-oscillating operation, draft increased continuously with increase in forward speed. Approach of studying soil failure in the laboratory test can be related to the field experiments.

  • PDF

휨.압축 하중을 받는 콘크리트 부재의 크기효과 (Size Effect for Flexural Compression of Concrete Specimens)

  • 김진근;이성태;양은익;김민욱;이상순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.371-376
    • /
    • 1998
  • In this study, the size effect of concrete members subjected to the axial load and bending moment is investigated using a series of C-shaped specimens of which test procedure is similar to those of Hognestad, Hanson, and McHenry's. Main test variable is a size ratio of the specimens(1:1/2:1/4) at the concrete compressive strength of 500kg/㎠. Test results show that the flexural compression strength at failure decreases as the size of specimen increases, that is, the size effect law is present. Model equation is derived using regression analyses with experimental data and it is compared with formulas for compressive strength of cylinders and shear strength of beams without stirrups. Size effects is distinct th following sequence; shear strength of beams without stirrups, compressive strength of C-shaped specimens, compressive strength of cylinders.

  • PDF

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

변형봉 센서 검증실험에 관한 연구 (A Study on the Verification Test for a Deformable Rod Sensor)

  • 김상일;최용규;이민희
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.35-47
    • /
    • 2003
  • 내부를 콘크리트로 속채움한 강관합성말뚝에 대한 기존의 하중전이 측정에서는 강관의 변형률만 측정하고 콘크리트의 변형률은 강관과 동일하다고 가정하였으며, 시방서에 규정한 방법으로 구한 강관과 콘크리트의 탄성계수를 이용하여 말뚝구성부재의 응력 및 축하중을 산정하였다. 그러나 강관의 변형률만 측정하여 강관과 콘크리트가 완전합성 거동하는 것으로 산정한 축하중은 실제 하중값과 상당한 차이를 보이고 있어 강관합성말뚝의 거동을 정확히 분석할 수 없었다. 따라서, 강관합성말뚝의 경우 각 구성부재의 변형률을 측정할 필요성이 제기되었다. 본 연구에서는 강관합성말뚝의 구성부재인 강재와 콘크리트의 변형률을 측정하는데 사용할 수 있도록 개발된 변형봉 센서에 대한 검증실험을 수행하였다 변형봉 센서를 사용하여 말뚝축하중을 산정할 경우 콘크리트의 탄성계수는 현장에서 제작한 콘크리트 공시체의 압축강도 시험에서 구하도록 제안하였다. 즉, (0.2∼0.6)f$_ck$의 응력 범위에 해당하는 평균접선기울기를 탄성계수로 사용하도록 제안하였다.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동 (Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles)

  • 박춘달;고대철;김병민
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.