• 제목/요약/키워드: Axial Collapse

검색결과 177건 처리시간 0.025초

캥거루우(Allied Rock Wallaby, Petrogale assimilus)의 정자완성(精子完成)과 정자(精子)에 관한 전자현미경적(電子顯微鏡的) 연구(硏究) (Electron-Microscopic Studies on the Spermiogenesis and Spermatozoa of the Allied Rock Wallaby(Petrogale assimilus))

  • 김종욱
    • Applied Microscopy
    • /
    • 제17권1호
    • /
    • pp.1-15
    • /
    • 1987
  • Testes from the allied rock wallaby(Petrogale assimilus) have been examined by the electron microscopy in thin sections in order to examine spermiogenesis and structure of spermatozoa. The spermiogenesis can be divided into nine stages: early Golgi, late Golgi, collapsing, nuclear protrusion, condensation and flattening, nuclear shaping, rotation, nuclear ring contraction, and maturation. The acrosome has been abruptly formed following the collapse of expanded acrosomal vesicle without the cap stage described in the eutheria. The flatly condensed nucleus rotates obliquely to the axis of the axial filament complex and the folded acrosome covers the anterior third of the dorsal nuclear surface forming a wide subacrosormal space as the nuclear ring has contracted. The Sertoli cell reaction and spur are prominent during the nuclear protrusion and rotation stages. A mature spermatozoon has S-shape head which has an extended part reaching to the vicinity of the middle piece.

  • PDF

단순 차체 모델링을 이용한 차량 정면충돌해석 (Frontal Crashworthiness Analysis of Vehicle Using simplified Structure Modelling)

  • 김홍수;강신유;이인혁;박신희;한동철
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.23-30
    • /
    • 1997
  • Modelling and crashworthiness analysis of simplified vehicle structures with beam element and nonlinear spring element to which axial and bending collapse mecha- nisms are applied are carried out. And on the basis of these analyses, two types of full car modelling and crahworthiness analyses with nonlinear spring and beam element are accomplished. The one is the full car model of which 30% of the structures are modelled with nonlinear spring and beam element, and the other 75% of whole structures. And the results are compared with those of full car analysis with shell element.

  • PDF

국부이상부식을 가진 선체판의 압괴강도에 관한 연구 (A Study on the Ultimate Compressive Strength of Ship Plate with Local Corrosion)

  • 고재용;남정길
    • 한국항해학회지
    • /
    • 제22권3호
    • /
    • pp.65-72
    • /
    • 1998
  • 최근에는 고장력강의 사용증대와 함께 구조부재가 경량화추세에 있으며 이상부식이 발생한 구조부재는 강도가 크게 저하되리라 예상되지만 지금까지 이에 관한 연구가 거의 없는 상태이다. 본 연구에서는 단소성대변형유한요소법을 적용하여 국부이상부식을 가진 판이 면내압축하중을 받을 경우에 압축최종강도에 미치는 부식부영역의 크기. 부식부의 판두께 감소량 및 세장비의 영향에 대하여 연구하였다.

  • PDF

Zetlin형 케이블 돔 구조물의 정적 불안정 거동에 관한 연구 (A Study on the Static Instability Behaviour of the Zetlin Type Cable Dome Structures)

  • 김형석;김승덕;강문명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.541-548
    • /
    • 2002
  • Membrane, cable structure and membrane-cable structural system are more lighter than another common structural system, and these are able to be effectively build Lip spatial structures using axial stiffness. However when the load reach at critical load level, it might be happened snap-through or bifurcation according to the structure's shape, and these collapse mechanism should be very important in the design of structures. So, In this paper we study static instability of Zetlin-type cable dome, one of the hybrid cable dome. Moreover, as the unstable behavior of shell structures are very sensitive to the initial condition, we seek to find the effect of initial condition.

  • PDF

철근 콘크리트 골조 비선형 해석의 새로운 기법 (New Approach for Nonlinear Analysis of Reinforced Cconcrete Fames)

  • 김진근;이태규
    • 전산구조공학
    • /
    • 제5권2호
    • /
    • pp.119-127
    • /
    • 1992
  • 변형영화(strain-softening)현상을 보이는 철근 콘크리트 구조물의 실제 파괴 발생시까지의 거동을 해석하기 위하여 변위제어법을 사용하고, 해석결과의 신뢰도가 떨어지지 않으면서도 해석 수행시간을 줄이기 위하여 기존의 층상화 방법과 비층상화 방법의 장점을 조합한 새로운 기법에 의하여 구조물의 해석을 실시하였다. 또한 선택된 요소의 크기에 따라 해석결과가 다르게 나타나는 현상을 보정해 주기 위한 방법으로 파괴 에너지의 개념을 도입하여 단면의 변형도 분포를 바꾸어 주는 방식을 제안하였으며, 이에 의한 해석을 실시하여 실험치와 비교하였다.

  • PDF

복합재 박막 구조물의 압축강도 예측 (Predicting the Compressive Strength of Thin-walled Composite Structure)

  • 김성준;이동건
    • 한국항공운항학회지
    • /
    • 제27권2호
    • /
    • pp.9-15
    • /
    • 2019
  • The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

A new design method for site-joints of the tower crane mast by non-linear FEM analysis

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.343-365
    • /
    • 2019
  • Among the themes related to earthquake countermeasures at construction sites, those for tower cranes are particularly important. An accident involving the collapse of a crane during the construction of a skyscraper has serious consequences, such as human injury or death, enormous repair costs, and significant delays in construction. One of the causes of deadly tower crane collapses is the destruction of the site joints of the tower crane mast. This paper proposes a new design method by static elastoplastic finite element analysis using a supercomputer for the design of the end plate-type tensile bolted joints, which are generally applied to the site joints of a tower crane mast. This new design method not only enables highly accurate and reliable joint design but also allows for a design that considers construction conditions, such as the introduction of a pre-tension axial force on the bolts. By applying this new design method, the earthquake resistance of tower cranes will undoubtedly be improved.

An analytical approach for offshore structures considering soil-structure interaction

  • Ali Sari;Kasim Korkmaz
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.25-38
    • /
    • 2024
  • This paper presents an advanced analytical approach for the design and analysis of fixed offshore structures with soil structure interaction considered. The proposed methodology involves conducting case studies to illustrate and assess the structural response of a structure considering seven different earthquakes, with the primary goal of ensuring there is no global collapse in the structures. The case studies focus on developing a model for structural analysis and its topside, incorporating nonlinear axial and lateral springs to capture soil-pile interaction. Additionally, mass and damping ratios are considered through the use of dashpots in the analyses. Finite Element Software was employed for structural analyses with detailed modeling, with soil spring nodes applied in the entire structure across various depths. After the finite element analysis was carried out, a sensitivity analysis was conducted to quantify and report the effects of different parameters.

횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구 (Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load)

  • 고재용;박주신
    • 한국항해항만학회지
    • /
    • 제31권3호
    • /
    • pp.235-245
    • /
    • 2007
  • 선체의 갑판부와 선저부 그리고 해양구조물의 기본적인 구조는 보강판이다. 보강판넬은 한쪽방향으로 위치한 보강재 혹은 종/횡 방향으로 복잡하게 위치한 구조를 이루고 있으며, 후자의 모델을 그릴리지 구조라고 부른다 선체구조설계 단계에서 선박의 종강도 평가는 가장 중요한 항목이다. 일반적으로, 극심한 해상상태에 놓인 선박의 선저부에는 호깅조건에 의해 발생되는 횡모멘트에 기인하여 압축하중이 작용하게 되며, 이와 동시에 수압하중 작용으로 인한 국부휭모멘트가 작용된다. 본 논문에서는, 구조해석 결과의 검증을 위해서 여러 가지 해석프로그램 및 현재 사용되고 있는 선급룰과의 비교를 하여 횡하중의 영향에 따른 압축최종강도에 대해 분석하고, 여러 가지 설계변수를 변화하여, 각각의 영향을 검토하고, 최종적으로 조합하중 조건에서의 횡하중의 영향에 대해서 분석하였다. 본 연구에서 얻어진 결과들은 최종한계상태설계법에 기반을 두고, 조합하중이 작용하는 선체보강판의 구조강도 거동에 대해서 하중성분에 대한 관계를 고찰하였다.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.