• Title/Summary/Keyword: Axial Burnup Distribution

Search Result 10, Processing Time 0.022 seconds

A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit

  • Yun, Hyungju;Kim, Do-Yeon;Park, Kwangheon;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.624-634
    • /
    • 2016
  • Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that $k_{eff}$ values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

Development of Axial Power Distribution Monitoring System Using Two-Level Encore Detector (상하부 2개의 노외계측기를 이용한 축방향 출력분포 감시계통 개발)

  • Chi, Sung-Goo;Song, Jae-Woong;Ahn, Dwak-Hwan;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.294-301
    • /
    • 1989
  • The Axial Power Distribution Monitoring System(APDMS) program was developed to calculate a detailed axial power distribution using two-level excore detector, cold leg temperature and control rod position signals. The unnormalized two-level excore detector signals were corrected for the rod shadowing factor determined by control rod position and for the temperature shadowing factor calculated based on cold leg temperature. A shape annealing matrix was then applied to the corrected excore detector response to yield peripheral power. After the core average power was obtained using linear relationship bet-ween core average and peripheral power, the boundary point power correction coefficient was applied to core average power in order to obtain boundary power for both upper and lower core axial boundaries. Then, the axial power distribution was synthesized by spline approximation. In spite of burnup, power level, control rod postion and axial offset changes, the comparisons of axial power distributions between BOXER simulation program and APDMS results showed good agreements within 5% root mean square error for Kori Unit 3 Cycle 4.

  • PDF

Core Follow Analysis for Yonggwang Unit 3 Cycle 1

  • Baek, Byung-Chan;Lee, Chang-Kue;Lee, Chung-Chan;Zee, Sung-Quun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.538-544
    • /
    • 1996
  • This paper presents the results of the core follow analysis for Yonggwang Unit 3 Cycle 1. The values of peaking factors (Fxy, Fq, Fr anf Fz) and core power distribution measured and processed by CECOR code[1] are compared with those predicted by ROCS code[2], The measured boron rundown is also compared with the predicted values. As results, the comparison of peaking factors, radial and axial power distributions and boron rundown between the measured and the predicted show good agreement throughout the cycle. Additionally, assembly burnup differences between CECOR and ROCS at EOC1 (13650 MWD/MTD are within 5% of core average burnup.

  • PDF

Improving the Neutronic Characteristics of a Boiling Water Reactor by Using Uranium Zirconium Hydride Fuel Instead of Uranium Dioxide Fuel

  • Galahom, Ahmed Abdelghafar
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.751-757
    • /
    • 2016
  • The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide ($UO_2$) and uranium zirconium hydride ($UZrH_{1.6}$) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with $UO_2$ contains $8{\times}8$ fuel rods while that fueled with $UZrH_{1.6}$ contains $9{\times}9$ fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. $UZrH_{1.6}$ fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

EVALUATION OF THE UNCERTAINTIES IN THE MODELING AND SOURCE DISTRIBUTION FOR PRESSURE VESSEL NEUTRON FLUENCE CALCULATIONS

  • Kim, Yong-Il;Hwang, Hae-Ryong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.237-241
    • /
    • 2001
  • The uncertainties associated with fluence calculation at the pressure vessel have been evaluated for the Korean Next Generation Reactor, APR1400. To obtain uncertainties, sensitivity analyses were performed for each of the parameters important to calculated fast neutron fluence. Among the important parameters to the overall uncertainties, reactor modeling and core neutron source were examined. Mechanical tolerances, composition and density variations in the reactor materials as well as application of $r-{\theta}$ geometry in rectilinear region contribute to uncertainty in the reactor modeling. Depletion and buildup of fissile nuclides, instrument error related to core power level, uncertainty of fuel pin burnup, and variation of long-term axial peaking factors are main contributors to the core neutron source uncertainty. The sensitivity analyses have shown that the uncertainty in the fluence calculation at the reactor pressure vessel is +12%.

  • PDF

Performance of different absorber materials and move-in/out strategies for the control rod in small rod-controlled pressurized water reactor: A study based on KLT-40 model

  • Zhiqiang Wu;Jinsen Xie;Pengyu Chen;Yingjie Xiao;Zining Ni;Tao Liu;Nianbiao Deng;Aikou Sun;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2756-2766
    • /
    • 2024
  • Small rod-controlled pressurized water reactors (PWR) are the ideal energy source for vessel propulsion, benefiting from their high reactivity control efficiency. Since the control rods (CRs) increase the complexity of reactivity control, this paper seeks to study the performance of CRs in small rod-controlled PWRs to extend the lifetime and reduce power offset due to CRs. This study investigates CR grouping, move-in/out strategies, and axially non-uniform design effects on core neutron physics metrics. These metrics include axial offset (AO), core lifetime (CL), fuel utilization (FU), and radial power peaking factor (R-PPF). To simulate the movement of the CRs, a "Critical-CR-burnup" function was developed in OpenMC. In CR designs, the CRs are grouped into three banks to study the simultaneous and prioritized move-in/out strategies. The results show CL extension from 590 effective full power days (EFPDs) to 638-698 EFPDs. A lower-worth prioritized strategy minimizes AO and the extremum values decrease from -0.69 and + 0.81 to -0.28 and + 0.51. Although an axially non-uniform CR design can improve AO at the beginning of cycle (BOC), considering the overall CR worth change is crucial, as a significant decrease can adversely impact axial power distribution during the middle of cycle (MOC).

THERMAL-HYDRAULIC CHARACTERISTICS FOR CANFLEX FUEL CHANNEL USING BURNABLE POISON IN CANDU REACTOR

  • BAE, JUN HO;JEONG, JONG YEOB
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.559-566
    • /
    • 2015
  • The thermalehydraulic characteristics for the CANadian Deuterium Uranium Flexible (CANFLEX)-burnable poison (BP) fuel channel, which is loaded with a BP at the center ring based on the CANFLEX-RU (recycled uranium) fuel channel, are evaluated and compared with that of standard 37-element and CANFLEX-NU (natural uranium) fuel channels. The distributions of fuel temperature and critical channel power for the CANFLEX-BP fuel channel are calculated using the NUclear Heat Transport CIRcuit Thermohydraulics Analysis Code (NUCIRC) code for various creep rate and burnup. CANFLEX-BP fuel channel has been revealed to have a lower fuel temperature compared with that of a standard 37-element fuel channel, especially for high power channels. The critical channel power of CANFLEX-BP fuel channel has increased by about 10%, relative to that of a standard 37-element fuel channel for 380 channels in a core, and has higher value relative to that of the CANFLEX-NU fuel channel except the channels in the outer core. This study has shown that the use of a BP is feasible to enhance the thermal performance by the axial heat flux distribution, as well as the improvement of the reactor physical safety characteristics, and thus the reactor safety can be improved by the use of BP in a CANDU reactor.

Verification and validation of STREAM/RAST-K for PWR analysis

  • Choe, Jiwon;Choi, Sooyoung;Zhang, Peng;Park, Jinsu;Kim, Wonkyeong;Shin, Ho Cheol;Lee, Hwan Soo;Jung, Ji-Eun;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.356-368
    • /
    • 2019
  • This paper presents the verification and validation (V&V) of the STREAM/RAST-K 2.0 code system for a pressurized water reactor (PWR) analysis. A lattice physics code STREAM and a nodal diffusion code RAST-K 2.0 have been developed by a computational reactor physics and experiment laboratory (CORE) of Ulsan National Institute of Science and Technology (UNIST) for an accurate two-step PWR analysis. The calculation modules of each code were already verified against various benchmark problems, whereas this paper focuses on the V&V of linked code system. Three PWR type reactor cores, OPR-1000, three-loop Westinghouse reactor core, and APR-1400, are selected as V&V target plants. This code system, for verification, is compared against the conventional code systems used for the calculations in nuclear design reports (NDRs) and validated against measured plant data. Compared parameters are as follows: critical boron concentration (CBC), axial shape index (ASI), assembly-wise power distribution, burnup distribution and peaking factors. STREAM/RAST-K 2.0 shows the RMS error of critical boron concentration within 20 ppm, and the RMS error of assembly power within 1.34% for all the cycles of all reactors.