• 제목/요약/키워드: Avoiding Obstacles

검색결과 105건 처리시간 0.06초

지능형 에이전트의 움직이는 장애물 충돌 회피를 위한 베이지안 추론 주도형 행동 네트워크 구조 (Bayesian Inference driven Behavior-Network Architecture for Intelligent Agent to Avoid Collision with Moving Obstacles)

  • 민현정;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1073-1082
    • /
    • 2004
  • 본 논문에서는 변화하는 환경에서 에이전트의 인지 정보로부터 움직이는 물체의 운동모델을 미리 알 수 없는 경우에도 적용할 수 있는 적응적인 행동을 생성하는 방법을 제안한다. 전통적인 에이전트의 지능제어 방법은 환경에 대해 알고 있는 정보를 이용한다는 제약 때문에 강건하지만 다양하고 복잡한 환경에 적용할 수 얼었다. 환경에 대한 정보가 없는 상황에서 에이전트가 자율적으로 행동하기 위해서는 행동 기반의 방법이 적합하며, 실제와 같은 변화는 환경에서 에이전트의 적응적 행동을 위해서는 상황을 미리 추론하고 대처하는 능력이 필요하다. 움직이는 장애물 피하기는 변화하는 환경에서의 적응적 행동생성의 가능성을 보여줄 수 있는 문제이기 때문에 다양한 방법으로 연구되고 있다. 본 논문에서는 고정된 장애물뿐만 아니라 움직이는 장애물을 인지하고 피하는 적응적인 행동을 생성하기 위한 2단계의 제어 구조를 제안한다. 1단계는 상황을 인지하고 자율적으로 행동을 생성하는 행동 네트워크 구조이고 2단계는 변화하는 상황을 추론하고 제어정보를 1단계로 전달하는 베이지안 네트워크 구조이다. 시뮬레이터를 이용한 실험을 통해 제안한 방법으로 고정된 장애물과 움직이는 장애물을 피하고 목적지를 찾아가는 것을 확인할 수 있었다.

장애물이 있는 경우의 효율적인 로보트 동자계획 (A simple and efficient planning of robot motions with obstacle avoidance)

  • 정봉주;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.880-885
    • /
    • 1995
  • This paper deals with the efficient planning of robot motions in the Cartesian space while avoiding the collision with obstacles. The motion planning problem is to find a path from the specified starting robot configuration that avoids collision with a known set of stationary obstacles. A simple and efficient algorithm was developed using "Backward" approach to solve this problem. The computational result was satisfactory enough to real problems. problems.

  • PDF

퍼지 위험지수에 의한 이동로봇의 물체 추적 및 장애물 회피 주행 제어기 (A Simultaneous Object Tracking and Obstacles Avoidance Controller with Fuzzy Danger Factor of Mobile Robot)

  • 강재구;이중재;지민석;유범재
    • 로봇학회논문지
    • /
    • 제2권3호
    • /
    • pp.212-220
    • /
    • 2007
  • This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.

  • PDF

퍼지 제어기를 이용한 지능형 차량의 이동장애물 회피에 관한 연구 (A study on Moving OBstacle Avoidance for an Intelligent Vehicle Using Fuzzy Controller)

  • 김훈모
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.155-163
    • /
    • 2000
  • This paper presents a path planning method of the sensor based intelligent vehicle using fuzzy logic controller for avoidance of moving obstacles in unknown environments. Generally it is too difficult and complicated to control intelligent vehicle properly by recognizing unknown terrain with sensors because the great amount of imprecise and ambiguous information has to be considered. In this respect a fuzzy logic can manage such the enormous information in a quite efficient manner. Furthermore it is necessary to use the relative velocity to consider the mobility of obstacles, In order to avoid moving obstacles we must deliberate not only vehicle's relative speed toward obstacles but also self-determined acceleration and steering for the satisfaction of avoidance efficiency. In this study all the primary factors mentioned before are used as the input elements of fuzzy controllers and output signals to control velocity and steering angle of the vehicle. The main purpose of this study is to develop fuzzy controllers for avoiding collision with moving obstacles when they approach the vehicle travelling with straight line and for returning to original trajectory. The ability are and effectiveness of the proposed algorithm are demonstrated by simulations and experiments.

  • PDF

기구학적 여유 자유도를 지니는 전방향 모바일 로봇에 관한 연구 (Study of an Omni-directional Mobile Robot with Kinematic Redundancy)

  • 정의정;이병주;김희국
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.338-344
    • /
    • 2008
  • Most omni-directional mobile robots have to change their trajectory for avoiding obstacles regardless of the size of the obstacles. However, an omni-directional mobile robot having kinematic redundancy can maintain the trajectory while the robot avoids small obstacles. This works deals with the kinematic modeling and motion planning of an omni-directional mobile robot with kinematic redundancy. This robot consists of three wheel mechanisms. Each wheel mechanism is modeled as having four joints, while only three joints are necessary for creating the omni-directional motion. Thus, each chain has one kinematic redundancy. Two types of wheel mechanisms are compared and its kinematic modeling is introduced. Finally, several motion planning algorithms using the kinematic redundancy are investigated. The usefulness of this robot is shown through experiment.

  • PDF

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

이종 로봇팀의 협업을 통한 맵 빌딩과 위치추정 (Cooperation of Heterogeneous Robot Team for Localization and Map Building)

  • 정진수;임윤원;강수혁;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper we present cooperation of heterogeneous robot team, composed of a wheeled robot and a helicopter for localization and map building. This heterogeneous robot team can successfully fulfill task by combining the abilities of both robots than single robot because wheeled robot and helicopter have complementing ability. The scenario describes a tightly cooperative task, where the wheeled robot move carrying the helicopter and detect obstacles, if there are obstacles, helicopter take off for map building and land, then robot team move destination avoiding obstacles. We present PID controller for position control of helicopter and transformation algorithm to global coordinate from image pixel coordinate. Experimental result show that the proposed method is valid.

다관절 지능 로봇시스템을 위한 장애물 우회 연구 (A Study on Collision Avoidance for Multi-link Intelligent Robots)

  • 신현배;이병룡
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.165-173
    • /
    • 1998
  • In this paper, a motion control algorithm is developed by using fuzzy control technique, which makes a robot arm avoid unexpected obstacles when the robot is moving from the start to a goal posture. During the motion, if there exist no obstacles the robot arm moves along the pre-defined path. But if some obstacles are recognized and close to the robot arm, a fuzzy controller is activated to adjust the path of the robot arm. To show the feasibility of the developed algorithm, numerical simulations and experiments are carried out. In the experiments, redundant planar robot arms are considered for the collision avoidance test, and it was proved that the developed algorithm gives good collision avoiding performance.

  • PDF

충돌회피환경에서의 퍼지 규칙 기반 멀티 모바일 로봇 시스템 (Multi-Mobile Robot System with Fuzzy Rule based Structure in Collision avoidance)

  • 김동원;이종호
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.233-238
    • /
    • 2010
  • This paper describes a multi-mobile robot system with fuzzy rule based structure in collision avoidance. Collision avoidance is an important function to perform a given task collaboratively and cooperatively in multi-mobile robot environments. So the important but challenging problem is handled in this paper. Considered obstacles for collision avoidance between multi mobile robots are static, dynamic, or both of them at the same time. Using the fuzzy rule based structure, distance and angle from a robot to obstacles are described as fuzzy linguistic values and steering angle for the robot are updated from the collision environments. As a result, the multi-mobile robot can modify a global path from a robot itself to its own target. In addition, avoiding collision with static or dynamic obstacles for the robot system can be achieved. Simulation based experimental results are given to show usefulness of this method.