• 제목/요약/키워드: Avoidance system

Search Result 895, Processing Time 0.029 seconds

An Empirical Analysis on the Disposition of Tax Avoidance by Individual Businesses (개인사업자의 조세회피성향에 관한 실증분석)

  • Park Sang-Bong;Yun Mal-Sun
    • Management & Information Systems Review
    • /
    • v.17
    • /
    • pp.45-65
    • /
    • 2005
  • The purpose of this study is to contribute to a fundamental prevention of tax avoidance behaviors by individual businesses. For the purpose, this researcher surveyed factors surveyed individual business managers' disposition(type) of tax avoidance to determine factors influencing the avoidance, and proposed direction for further studies. Several hypotheses suggested here were verified to find that factors such as tax system, tax psychology, tax knowledge, social culture and the expectation of tax avoidance had effects on individual businesses' disposition of such avoidance. The multiple regression analysis made here showed that such factors as tax psychology, tax system and the expectation of tax avoidance affected the disposition of such avoidance and that the disposition was most influenced by tax system, followed by the expectation of tax avoidance and tax psychology in order. In conclusion, factors that have positive relations with tax avoidance, or tax burden and tax administration and those that have negative relations, or tax ethics and sanction are not helpful to preventing the avoidance. This is not consistent with previous results. Now behaviors of tax avoidance by individual businesses are prevailing and becoming more serious. In this sense, objective measurement devices should be developed to make possible further scientific studies about such behaviors. For the development, support by appropriate policies is needed.

  • PDF

The division of action situation of collision avoidance in intelligent collision avoidance system

  • Zheng, Zhongyi;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.114-119
    • /
    • 2001
  • Based on tole investigation on mariner’s behaviors in collision avoidance, actuality of collision avoidance at sea and the research on the uncertainty of collision avoidance behaviors adopted by two encounter vessels, and for the purpose to reduce the no-coordination action of collision avoidance between two encounter vessels, and on the base of different encounter situation in international convention for preventing collisions at sea, the concept of action situation between tee encounter vessels is proposed, and the directions for every encounter vessel to adopt course alteration to avoid collision are explained in different action situation. The mechanism of avoidance and reduction of no-coordination is established in intelligent collision avoidance system, and it is important id research on intelligent collision avoidance system.

  • PDF

Simulating Avoidance Actions and Evaluating Navigational Rules in An Expert System of Collision Avoidance

  • Jeong, Tae-Gwoen;Chao, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.79-80
    • /
    • 2007
  • An expert system of collision avoidance developed by CLIPS and Visual C++ is continuously introduced in this paper. Further, a simulation function of collision avoidance is added to the expert system, the function can simulate the avoidance actions of own ship and a specific target of a period of future time. This function can help navigators to estimate collision risk and make proper collision avoidance actions in dangerous situations for navigational safety of ships. Furthermore, navigational rules can also be evaluated during the process of simulation.

  • PDF

Research of the Unmanned Vehicle Control and Modeling for Obstacle Detection and Avoidance (물체인식 및 회피를 위한 무인자동차의 제어 및 모델링에 관한 연구)

  • 김상겸;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.183-192
    • /
    • 2003
  • Obstacle detection and avoidance are considered as one of the key technologies on an unmanned vehicle system. In this paper, we propose a method of obstacle detection and avoidance and it is composed of vehicle control, modeling, and sensor experiments. Obstacle detection and avoidance consist of two parts: one is longitudinal control system for acceleration and deceleration and the other is lateral control system for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control system of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are evaluated through road tests.

UNMANNED VEHICLE CONTROL AND MODELING FOR OBSTACLE AVOIDANCE

  • Kim, S.-G.;Kim, J.-H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.173-180
    • /
    • 2003
  • Obstacle avoidance is considered as one of the key technologies in an unmanned vehicle system. In this paper, we propose a method of obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. Obstacle avoidance consists of two parts: one longitudinal control system for acceleration; and deceleration and a lateral control system for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. The method proposed for vehicle control, modeling, and obstacle avoidance has been confirmed through vehicle tests.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

On the Development of Prototype Expert Collision Avoidance System of Automated Ship (자동화선의 평균예상전문가시스템 개발에 관한 연구)

  • 김시화
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.13-38
    • /
    • 1991
  • This paper intends to develop a Prototype Expert Collision Avoidance System by introducing expert system techniques into the decision block of anti-collision loop. The problem domain of this study is characterized and specified by combining the concepts of anti-collision loop and knowledge -based system for collision avoidance. Domain in knowledge which may originates from the appropriate sources such as the International Regulations for Preventing Collision at Sea 1972, Marine Traffic Laws, and many texts on the subject of anticollision navigation and good seamanship is acquired and formalized into the knowledge-base system using production rule. Finally, a Prototype Expert Collision Avoidance System is built by using the CLIPS, developed by AIS NASA written in and fully integrated with the C language, and some test-and-run results of the system are demonstrated and examined. The author considers the proposed system which is named PECAS to be meaningful as a test bed for a further refined Expert Collision Avoidance System on board the Automated Ship.

  • PDF

Review of Collision Avoidance Systems for Mine Safety Management: Development Status and Applications (광산안전관리를 위한 충돌방지시스템의 개발현황과 적용사례)

  • Lee, Chaeyoung;Suh, Jangwon;Baek, Jieun;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.282-294
    • /
    • 2017
  • This study analyzed the development status and applications of collision avoidance systems for mine safety management. The definitions of collision avoidance system used in Australia and USA were compared. Sensing technologies utilized in the collision avoidance systems were reviewed. In addition, several collision avoidance systems developed in oversea mining company, such as $MineAlert^{TM}$ Collision Awareness System, Cat $MineStar^{TM}$, and Intelligent Proximity Detection, were reviewed. In the domestic mining industry, no collision avoidance system was used. However, similar systems were utilized in the construction and railroad industry. Collision avoidance system can prevent unexpected collision accident and thus improve worker's safety in mine. Therefore, it is necessary to analyze and apply sensors and system appropriate for the domestic mining environment via review of overseas collision avoidance system.

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.