• Title/Summary/Keyword: Avionics System

Search Result 299, Processing Time 0.035 seconds

Implementation of Personalized Rehabilitation Exercise Mobile App based on Edge Computing

  • Park, Myeong-Chul;Hur, Hwa-La
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a mobile app for personalized rehabilitation exercise coaching and management service using an edge computing-based personalized exercise information collection system. The existing management method that relies on user input information has difficulty in examining the actual possibility of rehabilitation. In this paper, we implement an application that collects movement information along with body joint information through image information analysis based on edge computing at a remote location, measures the time and accuracy of the movement, and provides rehabilitation progress through correct posture information. In addition, in connection with the measurement equipment of the rehabilitation center, the health status can be managed, and the accuracy of exercise information and trend analysis information is provided. The results of this study will enable management and coaching according to self-rehabilitation exercises in a contactless environment.

Implementation of A Thin Film Hydroponic Cultivation System Using HMI

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.55-62
    • /
    • 2024
  • In this paper, we propose a thin-film hydroponic plant cultivator using HMI display and IoT technology. Existing plant cultivators were difficult to manage due to soil-based cultivation, and it was difficult to optimize environmental conditions due to the open cultivation environment. In addition, there are problems with plant cultivation as immediate control is difficult and growth of plants is delayed. To solve this problem, a cultivation environment was established by connecting the MCU and sensors, and the environment information could be checked and quickly controlled by linking with the HMI display. Additionally, a case was applied to minimize changes in environmental information. Implementation of a thin-film hydroponic cultivation system made soil management easier, improved functionality through operation and control, and made it easy to understand environmental information through the display. The effectiveness of rapid growth was confirmed through crop cultivation experiments in existing growers and hydroponic growers. Future research directions will include optimizing growth information by transmitting and storing cultivation environment information and linking and comparing growth information using vision cameras. It is expected that this will enable efficient and stable plant cultivation.

Proposal of a Fail-Safe Requirement Analysis Procedure to Identify Critical Common Causes an Aircraft System (항공기 시스템의 치명적인 공통 요인을 식별하기 위한 고장-안전 요구분석 절차 제안)

  • Lim, San-Ha;Lee, Seon-ah;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.259-267
    • /
    • 2022
  • The existing method of deriving the fail-safe design requirements for the domestic developed rotary-wing aircraft system may miss the factors that cause critical system function failures, when being applied to the latest integrated avionics system. It is because the existing method analyzes the severity effect of the failures caused by a single item. To solve the issue, we present a systematic analysis procedure for deriving fail-safe design requirements of system architecture by utilizing functional hazard assessment and development assurance level analysis of SAE ARP4754A, international standard for complex system development. To demonstrate that our proposed procedure can be a solution for the aforementioned issue, we set up experimental environments that include common factors that can cause critical function failures of a system, and we conducted a cross-validation with the existing method. As a result, we showed that the proposed procedure can identify the potential critical common factors that the existing method have missed, and that the proposed procedure can derive fail-safe design requirements to control the common factors.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

A Study on 3.0m Low-Altitude Long-Endurance Solar Powered UAV System (3.0m급 저고도 장기체공 태양광 무인기 시스템 연구)

  • Jaebaek Jeong;Taerim Kim;Doyoung Kim;Seokmin Moon;Jae-Sung Bae;Sanghyuk Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.10-17
    • /
    • 2023
  • This paper describes the research and development of a 3.0 m Solar-Powered UAV system for mission flight that is based on the 4.2 m Solar-powered UAV. Both the Solar-Powered UAVs were lightened in weight by applying a composite fuselage and solar charging system. Also, a deep stall landing application and airbag module were installed for usability in mission performance. The flight performance of the Solar-Powered UAV system was verified through flight test. In particular, the 3.0 m Solar-Powered UAV performed continuous flight along the coastline of Jeju Island for 147 km in 3 hours and 50 minutes, and its performance as a mission flight was also confirmed.

Design Improvement for Abnormal Display of Fuel Indicator Mounted on the Korean Utility Helicopter (한국형 기동헬기 연료량 지시계 이상시현 현상 설계개선)

  • Kim, Joung-Hun;Kim, Chang-Young;Chang, Joong-Jin;Chang, In-Ki;Jun, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.707-712
    • /
    • 2014
  • Aircraft fuel indicator is a device to indicate the amount of fuel remained during flight, where accurate and consistent operation of the indicator should be maintained. Previously the Korean Utility Helicopter fuel indicator sporadically displayed abnormal sign by "8888" during flight, jeopardizing flight safety. Inappropriate EMI/EMC performance was detected during trouble shooting process. The cause of the abnormal display was found to be resulted from unstable power induced by electro-magnetic disturbance and CAN communication error. The aircraft fuel indicator design was improved and the design compatibility was verified to avoid abnormal display.

Kinematic Analysis of the Quadruped Robot Using Computer Graphics (컴퓨터 그래픽스를 이용한 사각보행로보트의 기구적 해석)

  • Choi, Byoung-Wook;Lim, Joon-Hong;Chung, Myung-Jin;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1173-1182
    • /
    • 1988
  • The stability, energetic efficiency and walking volume are affected by the geometric structure of legs of a walking robot. A quadruped walking robot is considered to have large stability margin among the walking robots and pantograph leg permits large walk stroke and mutually independent vertical and horizontal movements, but the kinematic characteristics are difficult to analyze. Graphical method may be useful to characterize three dimensional legged motion of the pantograph mechanism. We present the modelling method for three different quadruped robots with pantograph legs that have different joints mechanism. The modeled robots are animated by a path that is planned with respect to the center of body. In particular, graphical animation incorporates leg control to rotation and side walking and uses the window of Sun-3 system for displaying joint information.

  • PDF

Development of Operational Flight Program for Smart UAV (스마트무인기 비행운용프로그램 개발)

  • Park, Bum-Jin;Kang, Young-Shin;Yoo, Chang-Sun;Cho, Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.805-812
    • /
    • 2013
  • The operational flight program(OFP) which has the functions of I/O processing with avionics, flight control logic calculation, fault diagnosis and redundancy mode is embedded in the flight control computer of Smart UAV. The OFP was developed in the environment of PowerPC 755 processor and VxWorks 5.5 real-time operating system. The OFP consists of memory access module, device I/O signal processing module and flight control logic module, and each module was designed to hierarchical structure. Memory access and signal processing modules were verified from bench test, and flight control logic module was verified from hardware-in-the-loop simulation(HILS) test, ground integration test, tethered test and flight test. This paper describes development environment, software structure, verification and management method of the OFP.

Portable and Extensible ARINC 653 for Drones (드론을 위한 이식성과 확장성을 지원하는 ARINC 653)

  • Kim, Jooho;Jo, Hyun-Chul;Jin, Hyun-Wook;Lee, Sangil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1884-1891
    • /
    • 2016
  • With the various usage of civil drones, such as hobby, filmmaking and surveillance, the need for technology that safely reconstructs software for target application domains has been increasingly rising. In order to support a reliable software integration of avionic systems, the ARINC 653 standard has been proposed and adapted mainly on manned aircrafts. Therefore, applying ARINC 653 on civil drones could be desirable. Though, various researches on implementing ARINC 653 has been conducted, there are still additional requirements to apply ARINC 653 to civil drones that use various platforms and have a wide range of use. In this paper, taking account of these requirements, we implement a portable and extensible ARINC 653 and analyze its performance. We offer the portability with the OS abstraction layer that reduces dependency on a specific operating system, and provide the design that can extend internal functions, such as partition scheduler and process scheduler.

TSO Authorization of Airborne Multipurpose Electronic Displays (항공기용 다목적 디스플레이의 기술표준품 인증)

  • Cheon, Young-Ho;Lee, Seoung-Pil;Park, Jun-Hyeon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.765-776
    • /
    • 2013
  • Civilian aircraft industry, even if the superior performance of the product in order to ensure the safety of aircraft navigation safety requirements necessary for compliance does not receive a legally recognized can not be used in aircraft characteristics. These are applied in a variety of safety in avionics for navigation of civil aircraft certification standards for the technology is implemented. KTSO-C113 aircraft for the purpose of electronic display technology to authenticate standard contains minimum performance standards. Standard design and manufacturing technology for type approval means approval by mounting the aircraft in order to use a separate approval is required. Through this paper, multi-display technology standards for aircraft type certification approval system and demonstrate compliance with the requirements for the certification practices introduced are presented.